Development Of A Pavement Rutting Model Using Shakedown Theory

Author:

Boulbibane Mostapha,Collins Ian F.

Abstract

Abstract The rutting of flexible pavements during their exploitation is considered to be one of the main problems in UK as well as worldwide. It is a serious mode of distress alongside fatigue in bituminous pavements that may lead to premature failure, as indicated by permanent deformation or rut depth along the wheel load path, and results in early and costly rehabilitation. This kind of pavement distress makes a negative impact to the serviceability characteristics of the flexible pavement, to the residual life of pavement structure and also to the safety and ride quality for traffic. Two design methods have been used to control rutting: one to limit the vertical compressive strain on the top of subgrade and the other to limit rutting to a tolerable amount usually around “12 mm”. Although experimental data and practical experience have been introduced into these design methods through empirical parameters, there is not a simple relationship between the elastic strain and the long-term plastic behaviour of pavement materials. This paper describes a method based on the kinematic shakedown theorem for constructing a mathematical model to predict the long-term behaviour of pavement structures under the action of repeated and cyclic loadings imposed by moving traffic. This method seeks the mechanism from within a class of mechanisms that minimises the shakedown limit load for pavement structures consisting of layers of Mohr-Coulomb materials. The model differs from extant models, in that the cyclic nature of the loading on a pavement is recognised from the outset, and the current method which is based upon foundation analysis, is replaced by a procedure employing shakedown theory that features the capabilities and applications of the developed technique for assessing rutting in flexible pavements. The basic concepts are outlined together with the most recent calculations of the critical design shakedown load. The influence of the design parameters such as, the strength, stiffness and depth of the granular base-course material as well as the consequences of traffic loading (number of equivalent standard axel loads – ESAL’s) are discussed.

Publisher

Walter de Gruyter GmbH

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Business and International Management

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3