Searching for the urine osmolality surrogate: an automated machine learning approach

Author:

Topcu Deniz İlhan1ORCID,Bayraktar Nilüfer1ORCID

Affiliation:

1. Department of Medical Biochemistry , Başkent University Faculty of Medicine , Ankara , Turkey

Abstract

Abstract Objectives Automated machine learning (AutoML) tools can help clinical laboratory professionals to develop machine learning models. The objective of this study was to develop a novel formula for the estimation of urine osmolality using an AutoML tool and to determine the efficiency of AutoML tools in a clinical laboratory setting. Methods Three hundred routine urinalysis samples were used for reference osmolality and urine clinical chemistry analysis. The H2O AutoML engine completed the machine learning development steps with minimum human intervention. Four feature groups were created, which include different urinalysis measurements according to the Boruta feature selection algorithm. Method comparison statistics including Spearman’s correlation, Passing–Bablok regression analysis were performed, and Bland Altman plots were created to compare model predictions with the reference method. The minimum allowable bias (24.17%) from biological variation data was used as the limit of agreement. Results The AutoML engine developed a total of 183 ML models. Conductivity and specific gravity had the highest variable importance. Models that include conductivity, specific gravity, and other urinalysis parameters had the highest R2 (0.70–0.83), and 70–84% of results were within the limit of agreement. Conclusions Combining urinary conductivity with other urinalysis parameters using validated machine learning models can yield a promising surrogate. Additionally, AutoML tools facilitate the machine learning development cycle and should be considered for developing ML models in clinical laboratories.

Funder

Sysmex Turkey, Baskent University

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3