Using machine learning to identify clotted specimens in coagulation testing

Author:

Fang Kui1,Dong Zheqing1,Chen Xiling1,Zhu Ji1,Zhang Bing1,You Jinbiao1,Xiao Yingjun1,Xia Wenjin1

Affiliation:

1. Clinical Laboratory , The Third Affiliated Hospital of Zhejiang Chinese Medical University , Hangzhou , P.R. China

Abstract

Abstract Objectives A sample with a blood clot may produce an inaccurate outcome in coagulation testing, which may mislead clinicians into making improper clinical decisions. Currently, there is no efficient method to automatically detect clots. This study demonstrates the feasibility of utilizing machine learning (ML) to identify clotted specimens. Methods The results of coagulation testing with 192 clotted samples and 2,889 no-clot-detected (NCD) samples were retrospectively retrieved from a laboratory information system to form the training dataset and testing dataset. Standard and momentum backpropagation neural networks (BPNNs) were trained and validated using the training dataset with a five-fold cross-validation method. The predictive performances of the models were then assessed based on the testing dataset. Results Our results demonstrated that there were intrinsic distinctions between the clotted and NCD specimens regarding differences in the testing results and the separation of the groups (clotted and NCD) in the t-SNE analysis. The standard and momentum BPNNs could identify the sample status (clotted and NCD) with areas under the ROC curves of 0.966 (95% CI, 0.958–0.974) and 0.971 (95% CI, 0.9641–0.9784), respectively. Conclusions Here, we have described the application of ML algorithms in identifying the sample status based on the results of coagulation testing. This approach provides a proof-of-concept application of ML algorithms to evaluate the sample quality, and it has the potential to facilitate clinical laboratory automation.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3