Prediction of heat transfer characteristics in a microchannel with vortex generators by machine learning

Author:

Gönül Alişan1ORCID,Çolak Andaç Batur2ORCID,Kayaci Nurullah3ORCID,Okbaz Abdulkerim4ORCID,Dalkilic Ahmet Selim5ORCID

Affiliation:

1. Department of Mechanical Engineering , Siirt University , 56100 Siirt , Turkey

2. Information Technologies Application and Research Center , Istanbul Commerce University , Istanbul , Turkey

3. Department of Mechanical Engineering , Tekirdağ Namık Kemal University , 59860 Tekirdağ , Turkey

4. Department of Mechanical Engineering , Dogus University , 34722 Istanbul , Turkey

5. Department of Mechanical Engineering , Yildiz Technical University , 34349 Istanbul , Turkey

Abstract

Abstract Because of the prompt improvements in Micro-Electro-Mechanical Systems, thermal management necessities have altered paying attention to the compactness and high energy consumption of actual electronic devices in industry. In this study, 625 data sets obtained numerically according to the change of five different geometric parameters and Reynolds numbers for delta winglet type vortex generator pairs placed in a microchannel were utilized. Four dissimilar artificial neural network models were established to predict the heat transfer characteristics in a microchannel with innovatively oriented vortex generators in the literature. Friction factor, Nusselt number, and performance evaluation criteria were considered to explore the heat transfer characteristics. Different neuron numbers were determined in the hidden layer of each of the models in which the Levethenberg–Marquardt training algorithm was benefited as the training algorithm. The predicted values were checked against the target data and empirical correlations. The coefficient of determination values calculated for each machine learning model were found to be above 0.99. According to obtained results, the designed artificial neural networks can provide high prediction performance for each data set and have higher prediction accuracy compared to empirical correlations. All data predicted by machine learning models were collected within the range of ±3% deviation bands, whereas the majority of the estimated data by empirical correlations dispersed within ±20% ones. For that reason, a full evaluation of the estimation performance of artificial neural networks versus empirical correlations data is enabled to fill a gap in the literature as one of the uncommon works.

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental study on cylinder wake control using forced rotation;Journal of Wind Engineering and Industrial Aerodynamics;2024-03

2. Enhanced heat transfer in corrugated plate fin heat sink;Kerntechnik;2023-03-30

3. Enhanced performance of a microchannel with rectangular vortex generators;Journal of Thermal Engineering;2023-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3