Enhanced heat transfer in corrugated plate fin heat sink

Author:

Jose Alen Mathew1,Kumar Manoj1,Patil Anil Kumar1ORCID

Affiliation:

1. Department of Mechanical Engineering , DIT University , Dehradun 248009 , Uttarakhand , India

Abstract

Abstract To design a compact heat sink, a simplified geometry, enhanced heat dissipation, and the minimum pressure drop should be taken into consideration. With this objective, an experimental investigation has been conducted with the corrugated plate-fin heat sink by varying the relative radius of corrugation and relative corrugation pitch in the range of 0.16–0.31, and 0.06–0.16, respectively, for the Reynolds number range of 6000–14,000. Experiments were conducted on a corrugated plate-fin heat sink using an open-loop experimental system comprising a test section of a rectangular channel measuring 2300 mm long, 180 mm wide, and 80 mm high. The corrugated fin creates higher disturbances caused by multiple separations and reattachments in the flow and thereby yielding a higher localized heat transfer coefficient and enhanced heat transfer from the system. The maximum fin performance is found to be 5.87 for the corrugated plate-fin heat sink corresponding to the relative radius of corrugation and relative corrugation pitch of 0.16 and 0.125, respectively.

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3