MAPK pathway involved in epidermal terminal differentiation of normal human epidermal keratinocytes

Author:

Meng Xianguang12,Qiu Liyun3,Song Haiyan1,Dang Ningning4

Affiliation:

1. Department of Dermatology , Jinan Central Hospital affiliated to Shandong University , Jinan 250013, Shandong Province , China

2. School of Medicine , Shandong University , Jinan Shandong Province , China

3. Department of Pharmacy , Jinan Central Hospital affiliated to Shandong University , Jinan 250013, Shandong Province , China

4. Department of Dermatology , Jinan Central Hospital affiliated to Shandong University , No.105 Jiefang Road , Jinan 250013, Shandong Province , China , Tel: +86-0531-85695173

Abstract

Abstract Objective To investigate the effect of mitogen-activated protein kinase (MAPK) signaling pathway in epidermal terminal differentiation. Methods The MAPK pathways (p38, ERK1/2, JNK) were inhibited by SB203580, PD98059, and SP600125 in normal human epidermal keratinocytes (NHEKs), respectively. Western blotting assays were performed to detect expression of filaggrin and differentiation-related proteins. The mRNA expressions of differentiation-related proteins were detected by real-time quantitative PCR (qRT-PCR). Results Inhibition of MAPK pathway by SB203580, PD98059, and SP600125 resulted in significant reduction of filaggrin expression in NHEKs. Inhibition of the p38 MAPK pathway decreased the expression of differentiation-related proteins (cytokeratin 5, cytokeratin 14, ST14, and SPRR3), Akt, and NF-κB. Inhibition of JNK also suppressed expression of cytokeratin 14, SPRR3, Akt, and NF-κB. However, inhibition of ERK1/2 merely decreased expression of SPRR3 and Akt. Conclusion MAPK pathways regulates epidermal terminal differentiation in NHEKs. The p38 signaling pathway plays an especially important role.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3