Acid red G dye removal from aqueous solutions by porous ceramsite produced from solid wastes: Batch and fixed-bed studies

Author:

Li Tianpeng123,Fan Jing1,Sun Tingting4

Affiliation:

1. School of Environment, Henan Normal University, Xinxiang, Henan 453007, China

2. College of City and Architecture Engineering, Zaozhuang University, Zaozhuang, Shandong 277160, China

3. Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, Shandong 266237, China

4. College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong 277160, China

Abstract

AbstractA novel porous ceramsite was made of municipal sludge, coal fly ash, and river sediment by sintering process, and the performance of batch and fixed-bed column systems containing this material in the removal of acid red G (ARG) dye from aqueous solutions was assessed in this study. The results of orthogonal test showed that sintering temperature was the most important determinant in the preparation of porous ceramsite, and it possesses developed pore structure and high specific surface area. Batch experiment results indicated that the adsorption process of ARG dye toward porous ceramsite was a spontaneous exothermic reaction, which could be better described with Freundlich–Langmuir isotherm model (R2 > 0.992) and basically followed the pseudo-first-order kinetic equation (R2 > 0.993). Column experiment results showed that when the porous ceramsite was used as packing material, its adsorption capacity was roughly improved by 3.5 times compared with that in batch system, and the breakthrough behavior was simulated well with Yoon–Nelson model, with R2 > 0.954. This study suggested that the novelty man-made porous ceramsite obtained from solid wastes might be processed as a certain cost-effective treatment material fit for the dye removal in aqueous solutions.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3