Malachite green dye removal using ceramsite-supported nanoscale zero-valent iron in a fixed-bed reactor

Author:

Li Tianpeng12,Chen Hongkai1,Wang Zhengqing3,Ding Huadong3,Xiao Ce3,Li Ce3,Sun Tingting4

Affiliation:

1. College of City and Architecture Engineering, Zaozhuang University , Zaozhuang , Shandong 277160 , China

2. Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University , Qingdao , Shandong 266237 , China

3. School of Resource Environment and Safety Engineering, University of South China , Hengyang , Hunan 421001 , China

4. College of Food Science and Pharmaceutical Engineering, Zaozhuang University , Zaozhuang , Shandong 277160 , China

Abstract

Abstract In this study, we prepared and characterized ceramsite-supported nanoscale zero-valent iron (nZVI). Malachite green (MG) dye removal from aqueous solutions using a fixed-bed reactor packed with the above composite material was investigated. This research was carried out according to the prophase study of the preparation and characterization of ceramsite material for water treatment using sintering method from solid wastes. The results indicated that ceramsite could be loaded with nZVI, mainly because of its magnetic property. With the decrease in the initial concentration and influent flow rate or the increase in the reaction temperature, the breakthrough curve became less steep. Meanwhile, the breakthrough and saturation points gradually shifted rightward. When the initial concentration was 10 mg·L−1, the reaction temperature was 25°C, and the influent flow rate was 5 mL·min−1, the breakthrough curve presented an irregular “S” shape, the breakthrough and saturation times were 230 and 515 h, respectively. The characterization of MG dye-containing wastewater treatment using ceramsite-supported nZVI in a fixed-bed reactor by employing the Yoon-Nelson kinetic model was superior to those using the Thomas and Adams-Bohart kinetic models, with R 2 > 0.96.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3