Al3Ti/ADC12 Composite Synthesized by Ultrasonic Chemistry in Situ Reaction

Author:

Sun Yong-Hui12,Yan Hong12,Xiong Jun-Jie12

Affiliation:

1. School of Mechanical Electrical Engineering, Nanchang University, Nanchang330031, China

2. Key Laboratory of Light Alloy Preparation & Processing, Nanchang University, Nanchang330031, China

Abstract

AbstractAl3Ti/ADC12 composite was synthesized in situ using Al-fluoride potassium titanate (K2TiF6) as the reaction system and an ultrasonic assisted direct melt reaction. Results indicate ultrasonic chemistry reactions are both accelerated and more complete compared to traditional in situ reactions. Al3Ti reinforced particles with a regular shape and size of 1-2 μm were well distributed and as-cast microstructures of composites were superior. Composite particles under ultrasonic assistance were also refined to a greater extent. Tensile strength and elongation rate of the composites reached 255 MPa and 2.2%, an increase of 19.1% and 37.5% respectively to those without ultrasonic aid. Cleavage surface of the composite declined and the number of dimples increased while dimples became smaller and deeper, showing obvious ductile fracture.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Reference54 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3