Hot deformation behavior of nano-Al2O3-dispersion-strengthened Cu20W composite

Author:

An Junchao1,Zhou Meng23,Tian Baohong23,Geng Yongfeng23,Ban Yijie23,Liang Shengli23

Affiliation:

1. School of Materials Science and Engineering, Luoyang Institute of Science and Technology , Luoyang 471023 , People’s Republic of China

2. School of Materials Science and Engineering, Henan University of Science and Technology , Luoyang 471023 , People’s Republic of China

3. Collaborative Innovation Center of Nonferrous Metals , Henan Province , Luoyang 471023 , People’s Republic of China

Abstract

Abstract Nano-Al2O3 dispersion-strengthened Cu20W composite was fabricated by vacuum hot-pressing sintering process. The electrical conductivity, relative density, and Brinell hardness were tested, respectively. The gleeble-1500D thermomechanical simulator was used to conduct isothermal compression with strain rates ranging from 0.001 to 10 s−1 and the temperatures ranging from 650 to 950°C. The microstructure of the Cu–Al2O3/20W composite was observed using an optical microscope and a transmission electron microscope, and the true stress–strain curves were analyzed. In addition, the influence of the nano-Al2O3 and tungsten on the thermal deformation process of the composite was analyzed. The relationship and interaction among work hardening, dynamic recovery, and dynamic recrystallization were illustrated. The results show that nano-Al2O3 particles pin dislocations and inhibit dynamic recovery and dynamic recrystallization. Consequently, the Cu–Al2O3/20W composite has typical dynamic recovery characteristics. Hence, the Cu–Al2O3/20W composite possesses outstanding high-temperature performance. The optimal processing domain of the Cu–Al2O3/20W composite ranged from 760 to 950°C with strain rates ranging from 0.01 to 0.1 s−1. Furthermore, the constitutive equation of the Cu–Al2O3/20W composite is established, and the activation energy is 155.069 kJ mol−1.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3