Affiliation:
1. Departamento de Matemática & Instituto Argentino de Matemática “Alberto P. Calderón”, Universidad de Buenos Aires & CONICET, Ciudad Universitaria (1428) CABA, Buenos Aires, Argentina
Abstract
AbstractWe study the geometry of Lie groups G with a continuous Finsler metric, in presence of a subgroup K such that the metric is right-invariant for the action of K. We present a systematic study of the metric and geodesic structure of homogeneous spaces M obtained by the quotient {M\simeq G/K}. Of particular interest are left-invariant metrics of G which are then bi-invariant for the action of K. We then focus on the geodesic structure of groups K that admit bi-invariant metrics, proving that one-parameter groups are short paths for those metrics, and characterizing all other short paths. We provide applications of the results obtained, in two settings: manifolds of Banach space linear operators, and groups of maps from compact manifolds.
Funder
Consejo Nacional de Investigaciones Científicas y Técnicas
Fondo para la Investigació́n Científica y Tecnológica
Subject
Applied Mathematics,General Mathematics
Reference120 articles.
1. Banach-like distances and metric spaces of compact sets;SIAM J. Imaging Sci.,2015
2. Homogeneous manifolds with an intrinsic metric. I;Sibirsk. Mat. Zh.,1988
3. Norm properties of C-numerical radii;Linear Algebra Appl.,1979
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献