Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals

Author:

Chiumiento Eduardo1,Massey Pedro1

Affiliation:

1. Departamento de Matemática & Centro de Matemática La Plata , 172470 FCE-UNLP , Calles 50 y 115, (1900) La Plata ; a nd Instituto Argentino de Matemática, “Alberto P. Calderón”, CONICET, Saavedra 15, 3er. piso, (1083) Buenos Aires , Argentina

Abstract

Abstract We study the Moore–Penrose inverse of perturbations by a proper symmetrically-normed ideal of a closed range operator on a Hilbert space. We show that the notion of essential codimension of projections gives a characterization of subsets of such perturbations in which the Moore–Penrose inverse is continuous with respect to the metric induced by the operator ideal. These subsets are maximal satisfying the continuity property, and they carry the structure of real analytic Banach manifolds, which are acted upon transitively by the Banach–Lie group consisting of invertible operators associated with the ideal. This geometric construction allows us to prove that the Moore–Penrose inverse is indeed a real bianalytic map between infinite-dimensional manifolds. We use these results to study the polar decomposition of closed range operators from a similar geometric perspective. At this point we prove that operator monotone functions are real analytic in the norm of any proper symmetrically-normed ideal. Finally, we show that the maps defined by the operator modulus and the polar factor in the polar decomposition of closed range operators are real analytic fiber bundles.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3