K-theory classification of graded ultramatricial algebras with involution

Author:

Hazrat Roozbeh1,Vaš Lia2

Affiliation:

1. Centre for Research in Mathematics, Western Sydney University, Parramatta, Australia

2. Department of Mathematics, Physics and Statistics, University of the Sciences, Philadelphia, PA 19104, USA

Abstract

AbstractWe consider a generalization {K_{0}^{\operatorname{gr}}(R)} of the standard Grothendieck group {K_{0}(R)} of a graded ring R with involution. If Γ is an abelian group, we show that {K_{0}^{\operatorname{gr}}} completely classifies graded ultramatricial {*}-algebras over a Γ-graded {*}-field A such that (1) each nontrivial graded component of A has a unitary element in which case we say that A has enough unitaries, and (2) the zero-component {A_{0}} is 2-proper ({aa^{*}+bb^{*}=0} implies {a=b=0} for any {a,b\in A_{0}}) and {*}-pythagorean (for any {a,b\in A_{0}} one has {aa^{*}+bb^{*}=cc^{*}} for some {c\in A_{0}}). If the involutive structure is not considered, our result implies that {K_{0}^{\operatorname{gr}}} completely classifies graded ultramatricial algebras over any graded field A. If the grading is trivial and the involutive structure is not considered, we obtain some well-known results as corollaries. If R and S are graded matricial {*}-algebras over a Γ-graded {*}-field A with enough unitaries and {f:K_{0}^{\operatorname{gr}}(R)\to K_{0}^{\operatorname{gr}}(S)} is a contractive {\mathbb{Z}[\Gamma]}-module homomorphism, we present a specific formula for a graded {*}-homomorphism {\phi:R\to S} with {K_{0}^{\operatorname{gr}}(\phi)=f}. If the grading is trivial and the involutive structure is not considered, our constructive proof implies the known results with existential proofs. If {A_{0}} is 2-proper and {*}-pythagorean, we also show that two graded {*}-homomorphisms {\phi,\psi:R\to S} are such that {K_{0}^{\operatorname{gr}}(\phi)=K_{0}^{\operatorname{gr}}(\psi)} if and only if there is a unitary element u of degree zero in S such that {\phi(r)=u\psi(r)u^{*}} for any {r\in R}. As an application of our results, we show that the graded version of the Isomorphism Conjecture holds for a class of Leavitt path algebras: if E and F are countable, row-finite, no-exit graphs in which every infinite path ends in a sink or a cycle and K is a 2-proper and {*}-pythagorean field, then the Leavitt path algebras {L_{K}(E)} and {L_{K}(F)} are isomorphic as graded rings if any only if they are isomorphic as graded {*}-algebras. We also present examples which illustrate that {K_{0}^{\operatorname{gr}}} produces a finer invariant than {K_{0}}.

Funder

Australian Research Council

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification conjectures for Leavitt path algebras;Bulletin of the London Mathematical Society;2024-09-04

2. Quasi-Baer $ * $-Ring Characterization of Leavitt Path Algebras;Siberian Mathematical Journal;2024-05

3. The Functor $K_{0}^{\operatorname {gr}}$ is Full and only Weakly Faithful;Algebras and Representation Theory;2023-01-25

4. Simplicial and dimension groups with group action and their realization;Forum Mathematicum;2022-03-01

5. Crossed product Leavitt path algebras;International Journal of Algebra and Computation;2021-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3