Quasi-Baer $ * $-Ring Characterization of Leavitt Path Algebras
-
Published:2024-05
Issue:3
Volume:65
Page:648-662
-
ISSN:0037-4466
-
Container-title:Siberian Mathematical Journal
-
language:en
-
Short-container-title:Sib Math J
Author:
Ahmadi M.ORCID, Moussavi A.ORCID
Publisher
Pleiades Publishing Ltd
Reference21 articles.
1. Abrams G. and Aranda Pino G., “The Leavitt path algebra of a graph,” J. Algebra, vol. 293, no. 2, 319–334 (2005). 2. Ara P., Moreno M.A., and Pardo E., “Nonstable K-theory for graph algebras,” Algebr. Represent. Theory, vol. 10, no. 2, 157–178 (2007). 3. Abrams G., Bell J., and Rangaswamy K.M., “On prime non-primitive von Neumann regular algebras,” Trans. Amer. Math. Soc., vol. 366, 2375–2392 (2014). 4. Aranda Pino G., Rangaswamy K.M., and Vaš L., “$ * $-Regular Leavitt path algebras of arbitrary graphs,” Acta Math. Sinica, vol. 28, no. 5, 957–968 (2012). 5. Abrams G. and Rangaswamy K.M., “Regularity conditions for arbitrary Leavitt path algebras,” Algebr. Represent. Theory, vol. 13, 319–334 (2010).
|
|