Brieskorn manifolds, positive Sasakian geometry, and contact topology

Author:

Boyer Charles P.1,Macarini Leonardo2,van Koert Otto3

Affiliation:

1. 1Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, United States of America

2. 2Instituto de Matemática, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil, Postal Code 21941-909

3. 3Department of Mathematics and Research Institute of Mathematics, Seoul National University, Building 27, room 402, San 56-1, Sillim-dong, Gwanak-gu, Seoul, South Korea, Postal Code 151-747

Abstract

AbstractUsing ${S^{1}}$-equivariant symplectic homology, in particular its mean Euler characteristic, of the natural filling of links of Brieskorn–Pham polynomials, we prove the existence of infinitely many inequivalent contact structures on various manifolds, including in dimension 5 the k-fold connected sums of ${S^{2}\times S^{3}}$ and certain rational homology spheres. We then apply our result to show that on these manifolds the moduli space of classes of positive Sasakian structures has infinitely many components. We also apply our results to give lower bounds on the number of components of the moduli space of Sasaki–Einstein metrics on certain homotopy spheres. Finally, a new family of Sasaki–Einstein metrics of real dimension 20 on ${S^{5}}$ is exhibited.

Funder

Simons Foundation

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference80 articles.

1. Remarks concerning contact manifolds;Tôhoku Math. J.,1977

2. Infinitely many contact structures on S4⁢m+1${S^{4m+1}}$;Int. Math. Res. Not. IMRN,1999

3. Nonregular contact structures on Brieskorn manifolds;Bull. Amer. Math. Soc.,1975

4. Structures de contact sur certaines sphères exotiques;C. R. Acad. Sci. Paris Sér. A-B,1976

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sasaki structures distinguished by their basic Hodge numbers;Bulletin of the London Mathematical Society;2022-04-11

2. Sasakian geometry on sphere bundles;Differential Geometry and its Applications;2021-08

3. Ricci Curvature, Reeb Flows and Contact 3-Manifolds;The Journal of Geometric Analysis;2021-04-03

4. Contact Structures of Sasaki Type and Their Associated Moduli;Complex Manifolds;2019-01-01

5. Reducibility in Sasakian geometry;Transactions of the American Mathematical Society;2018-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3