Reducibility in Sasakian geometry

Author:

Boyer Charles,Huang Hongnian,Legendre Eveline,Tønnesen-Friedman Christina

Abstract

The purpose of this paper is to study reducibility properties in Sasakian geometry. First we give the Sasaki version of the de Rham decomposition theorem; however, we need a mild technical assumption on the Sasaki automorphism group which includes the toric case. Next we introduce the concept of cone reducible and consider S 3 S^3 bundles over a smooth projective algebraic variety where we give a classification result concerning contact structures admitting the action of a 2-torus of Reeb type. In particular, we can classify all such Sasakian structures up to contact isotopy on S 3 S^3 bundles over a Riemann surface of genus greater than zero. Finally, we show that in the toric case an extremal Sasaki metric on a Sasaki join always splits.

Funder

Simons Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference57 articles.

1. Kähler metrics on toric orbifolds;Abreu, Miguel;J. Differential Geom.,2001

2. Hamiltonian 2-forms in Kähler geometry. II. Global classification;Apostolov, Vestislav;J. Differential Geom.,2004

3. A splitting theorem for extremal Kähler metrics;Apostolov, Vestislav;J. Geom. Anal.,2015

4. Convexity and commuting Hamiltonians;Atiyah, M. F.;Bull. London Math. Soc.,1982

5. On Sasakian-Einstein geometry;Boyer, Charles P.;Internat. J. Math.,2000

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Existence and non-existence of constant scalar curvature and extremal Sasaki metrics;Mathematische Zeitschrift;2023-07-18

2. Constant Scalar Curvature Sasaki Metrics and Projective Bundles;Springer Proceedings in Mathematics & Statistics;2023

3. The $S^3_{\boldsymbol{w}}$ Sasaki join construction;Journal of the Mathematical Society of Japan;2022-10-25

4. Iterated S 3 Sasaki Joins and Bott Orbifolds;Annales de la Faculté des sciences de Toulouse : Mathématiques;2022-07-01

5. Sasakian geometry on sphere bundles;Differential Geometry and its Applications;2021-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3