Uniform bounds for Kloosterman sums of half-integral weight with applications

Author:

Sun Qihang1ORCID

Affiliation:

1. Department of Mathematics , [ 14589]University of Illinois, Urbana , IL 61801 , USA

Abstract

Abstract Sums of Kloosterman sums have deep connections with the theory of modular forms, and their estimation has many important consequences. Kuznetsov used his famous trace formula and got a power-saving estimate with respect to x with implied constants depending on m and n. Recently, in 2009, Sarnak and Tsimerman obtained a bound uniformly in x, m and n. The generalized Kloosterman sums are defined with multiplier systems and on congruence subgroups. Goldfeld and Sarnak bounded sums of them with main terms corresponding to exceptional eigenvalues of the hyperbolic Laplacian. Their error term is a power of x with implied constants depending on all the other factors. In this paper, for a wide class of half-integral weight multiplier systems, we get the same bound with the error term uniformly in x, m and n. Such uniform bounds have great applications. For the eta-multiplier, Ahlgren and Andersen obtained a uniform and power-saving bound with respect to m and n, which resulted in a convergent error estimate on the Rademacher exact formula of the partition function p ( n ) {p(n)} . We also establish a Rademacher-type exact formula for the difference of partitions of rank modulo 3, which allows us to apply our power-saving estimate to the tail of the formula for a convergent error bound.

Publisher

Walter de Gruyter GmbH

Reference39 articles.

1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1974.

2. S. Ahlgren and N. Andersen, Algebraic and transcendental formulas for the smallest parts function, Adv. Math. 289 (2016), 411–437.

3. S. Ahlgren and N. Andersen, Kloosterman sums and Maass cusp forms of half integral weight for the modular group, Int. Math. Res. Not. IMRN 2018 (2018), no. 2, 492–570.

4. S. Ahlgren and A. Dunn, Maass forms and the mock theta function f ⁢ ( q ) f(q) , Math. Ann. 374 (2019), no. 3–4, 1681–1718.

5. N. Andersen and W. Duke, Asymptotic distribution of traces of singular moduli, Discrete Anal. 2022 (2022), Paper No. 4.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3