Analysis of the heat transfer enhancement in water-based micropolar hybrid nanofluid flow over a vertical flat surface

Author:

Algehyne Ebrahem A.12,Lone Showkat Ahmad3,Saeed Anwar4,Bognár Gabriella5

Affiliation:

1. Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741 , Tabuk 71491 , Saudi Arabia

2. Nanotechnology Research Unit (NRU), University of Tabuk , Tabuk 71491 , Saudi Arabia

3. Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University, Jeddah-M , Riyadh 11673 , Saudi Arabia

4. Department of Mathematics, Abdul Wali Khan University, Mardan , 23200 , Khyber Pakhtunkhwa , Pakistan

5. Institute of Machine and Product Design, University of Miskolc, Miskolc-Egyetemvaros 3515 , Miskolc , Hungary

Abstract

Abstract This article presented micropolar hybrid nanofluid flow comprising copper and alumina nanoparticles over a flat sheet. The mixed convection phenomenon is studied under the effect of gravity. Some additional forces such as magnetic field, thermal radiation, Eckert number, heat source, and thermal slip condition are adopted in this analysis. The leading equations are transformed into dimensionless format by employing appropriate variables and then evaluated by homotopy analysis method (HAM). The obtained results are compared with published results and found a good agreement with those published results. Also, the results of HAM are compared with those of numerical method and found a good agreement as well. The fluctuations within the flow profiles are showcased utilizing figures and tables, followed by an in-depth discussion and analysis. The outcomes of this work show that the higher volume fractions of copper and alumina nanoparticles improved the hybrid nanofluid viscosity, which results in the augmenting variation in the velocity profiles. The higher volume fractions of copper and alumina nanoparticles improved the hybrid nanofluid thermal conductivity, which results in the augmenting variation in thermal distribution. The growing mixed convection factor amplifies the buoyancy force toward the stagnation point flow, which enlarges the velocity panel. The effects of hybrid nanoparticles (Cu-Al2O3/water) at the surface are smaller on friction force and larger in case of thermal flow rate when compared to the nanofluids (Cu/water and Al2O3/water).

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3