Effectiveness of Radiation on Magneto-Combined Convective Boundary Layer Flow in Polar Nanofluid around a Spherical Shape

Author:

Swalmeh Mohammed Z.ORCID,Shatat Feras,Alwawi Firas A.,Ibrahim Mohd Asrul HeryORCID,Sulaiman Ibrahim Mohammed,Yaseen NusaybaORCID,Naser Mohammad F. M.

Abstract

Many physical aspects emerging from the local structure and micromotions of liquid particles can be studied by utilizing the governing model of micropolar liquid. It has the ability to explain the behavior of a wide range of real fluids, including polymeric solutions, liquid crystals, lubricants, and animal blood. This earned it a major role in the treatment of many industrial and engineering applications. Radiative heat transmission induced by a combined convection flow of micropolar fluid over a solid sphere, and its enhancement via nanoparticle oxides, are investigated in this study. An applied magnetic field and a constant wall temperature are also considered. The Tiwari–Das model is used to construct the mathematical model. An approximate numerical solution is included using the Keller box method, in which its numerical calculations are performed via MATLAB software, to obtain numerical results and graphic outputs reflecting the effects of critical parameters on the physical quantities associated with heat transfer. The investigation results point out that a weakness in the intensity of the magnetic field, or an increment in the nanoparticle volume fraction, causes an increment in velocity. Raising the radiation parameter promotes energy transport, angular velocity, and velocity.

Funder

Faculty of Entrepreneurship and Business, Universiti Malaysia Kelantan, Kelantan 16100, Malaysia.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3