Predictability of machine learning framework in cross-section data

Author:

Isik Nimet1,Eskicioglu Omer Can2

Affiliation:

1. Mathematics, and Science Education Department, Burdur Mehmet Akif Ersoy University , Burdur , Turkey

2. Software Engineering Department, Burdur Mehmet Akif Ersoy University , Burdur , Turkey

Abstract

Abstract Today, the use of artificial intelligence in electron optics, as in many other fields, has begun to increase. In this scope, we present a machine learning framework to predict experimental cross-section data. Our framework includes 8 deep learning models and 13 different machine learning algorithms that learn the fundamental structure of the data. This article aims to develop a machine learning framework to accurately predict double-differential cross-section values. This approach combines multiple models such as convolutional neural networks, machine learning algorithms, and autoencoders to create a more robust prediction system. The data for training the models are obtained from experimental data for different atomic and molecular targets. We developed a methodology for learning tasks, mainly using rigorous prediction error limits. Prediction results show that the machine learning framework can predict the scattering angle and energy of scattering electrons with high accuracy, with an R-squared score of up to 99% and a mean squared error of <0.7. This performance result demonstrates that the proposed machine learning framework can be used to predict electron scattering events, which could be useful for applications such as medical physics.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3