The collision between two electrons

Author:

Abstract

It is well-known that the problem of the collision between two particles interacting according to the inverse square law is exactly soluble on the wave mechanics, and that the solution yields the same scattering laws as the classical theory. If, however, the two particles are identical, e.g. , two electrons or two α-particles, this is not necessarily the case; for the wave functions used must be antisymmetrical or symmetrical in the co-ordinates of the two particles; and this may affect the scattering laws. In this paper we shall discuss the collision between two particles possessing spin, such as electrons, and also between two particles without spin, such as α-particles. Assuming an inverse square law force between the particles, and neglecting the actual spin forces, we shall deduce from the symmetry properties of the wave functions a scatter­ing law differing considerably from the classical. We shall also mention the various methods by which the effect could be observed, and give some experi­mental evidence in its favour. The application of the exclusion principle to collision problems has been discussed by the author in a previous paper. Suppose we wish to describe the motion of two particles interacting in any field of force. We obtain a solution w (r 1 r 2 ) of the wave equation, where r 1 refers to the position of the first particle, and r 2 to that of the second. If we did not use antisymmetrical wave functions, we should argue that the probability that the first particle should be at r 1 and the second at r 2 would be | w (r 1 r 2 )| 2 , and therefore the probability that one particle should be at r 1 and the other at r 2 would be | w (r 1 r 2 )| 2 + | w (r 2 r 1 )|

Publisher

The Royal Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3