Effect of forward expansion angle on film cooling characteristics of shaped holes

Author:

Zhang Bo1,Lin Li-Bing1,Li Ji-Quan1,Zhang Na-Ru1,Ji Hong-Hu1

Affiliation:

1. Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

AbstractAccording to the design requirements of high-temperature combustion chamber, an advanced shaped hole structure was designed for film cooling. Numerical method was applied in this study to investigate the flow and heat transfer characteristics of shaped holes and compared with those of cylindrical holes. The influence of the forward expansion angle of shaped holes on the flow and heat transfer was studied. The results show that compared to cylindrical holes, the diffused structure of shaped holes decreases the momentum of jet flow, improves the adhesion characteristics of the cooling air film, increases the diffusion of the coolant air outflow and improves the cooling efficiency between adjacent columns of holes in the lateral direction. When the forward expansion angle increases, the expansion section induced the flow vortex, which reduces the radial velocity of coolant flow and enhances the diffusion of cooling air film both in streamwise and spanwise directions. However, as the forward expansion angle increases further, the scale of vortex inside the shaped hole grows. Too large vortex inside the shaped hole increases the coolant eject angle, which weakens the film covering effect. Additionally, the shaped hole results in an increase in lateral spreading and enhances the cooling effect between adjacent columns of the film hole. The enhancement of the film cooling characteristics is due to the change in the shape of the film hole, resulting in the enhancement of the flow vortex, which induces complicated secondary flow.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Reference64 articles.

1. Experimental study of full coverage film cooling optimization;J Phys: Conf Ser,2012

2. Film Cooling,1971

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3