Influence of Mach Number of Main Flow on Film Cooling Characteristics under Supersonic Condition

Author:

Zhang Bo,Chen Yuan-Xiang,Wang Zhi-guo,Li Ji-Quan,Ji Hong-hu

Abstract

The flow and heat transfer characteristics of a film jet inclined to different supersonic situations with a varying Mach number of the main flow were numerically investigated. In supersonic situations, complicated waves are generated by the obstacle of the film jet. In this work, extra pressure is exerted onto the film jet, causing better film attachment to the wall. The strengthening of attachment decreases mixing between the main flow and film jet, causing better film cooling. We observed multi-interfacial layered structures caused by the film jet under the complicated effect of shock waves. At the interfaces of the film jet and shock waves, additional pressure is exerted on the film towards the wall. The pressure increases as the Mach number of the main flow increases and contributes to the increased adhesion of the gas film, which causes the cooling enhancement under a supersonic condition. In the vicinity of the film hole exit, a local low pressure region is formed under the influence of the supersonic main flow. An aerodynamic convergent–divergent state was formed in the film hole, devastating the state of supersonic congestion of the film hole and further enhancing the film cooling effect.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3