The performance profile: A multi–criteria performance evaluation method for test–based problems

Author:

Jaśkowski Wojciech1,Liskowski Paweł1,Szubert Marcin1,Krawiec Krzysztof1

Affiliation:

1. Institute of Computing Science, Poznań University of Technology, ul. Piotrowo 2, 60-965 Poznań, Poland

Abstract

Abstract In test-based problems, solutions produced by search algorithms are typically assessed using average outcomes of interactions with multiple tests. This aggregation leads to information loss, which can render different solutions apparently indifferent and hinder comparison of search algorithms. In this paper we introduce the performance profile, a generic, domain-independent, multi-criteria performance evaluation method that mitigates this problem by characterizing the performance of a solution by a vector of outcomes of interactions with tests of various difficulty. To demonstrate the usefulness of this gauge, we employ it to analyze the behavior of Othello and Iterated Prisoner’s Dilemma players produced by five (co)evolutionary algorithms as well as players known from previous publications. Performance profiles reveal interesting differences between the players, which escape the attention of the scalar performance measure of the expected utility. In particular, they allow us to observe that evolution with random sampling produces players coping well against the mediocre opponents, while the coevolutionary and temporal difference learning strategies play better against the high-grade opponents. We postulate that performance profiles improve our understanding of characteristics of search algorithms applied to arbitrary test-based problems, and can prospectively help design better methods for interactive domains.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Personalized Classifier Selection for EEG-Based BCIs;Computers;2024-06-21

2. Applicability of the theory of similarity in an evaluation of building development variants;Automation in Construction;2019-08

3. Online Discovery of Search Objectives for Test-Based Problems;Evolutionary Computation;2017-09

4. Accelerating coevolution with adaptive matrix factorization;Proceedings of the Genetic and Evolutionary Computation Conference;2017-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3