Personalized Classifier Selection for EEG-Based BCIs

Author:

Rahimipour Anaraki Javad12ORCID,Kolokolova Antonina3,Chau Tom12ORCID

Affiliation:

1. Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada

2. Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada

3. Department of Computer Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada

Abstract

The most important component of an Electroencephalogram (EEG) Brain–Computer Interface (BCI) is its classifier, which translates EEG signals in real time into meaningful commands. The accuracy and speed of the classifier determine the utility of the BCI. However, there is significant intra- and inter-subject variability in EEG data, complicating the choice of the best classifier for different individuals over time. There is a keen need for an automatic approach to selecting a personalized classifier suited to an individual’s current needs. To this end, we have developed a systematic methodology for individual classifier selection, wherein the structural characteristics of an EEG dataset are used to predict a classifier that will perform with high accuracy. The method was evaluated using motor imagery EEG data from Physionet. We confirmed that our approach could consistently predict a classifier whose performance was no worse than the single-best-performing classifier across the participants. Furthermore, Kullback–Leibler divergences between reference distributions and signal amplitude and class label distributions emerged as the most important characteristics for classifier prediction, suggesting that classifier choice depends heavily on the morphology of signal amplitude densities and the degree of class imbalance in an EEG dataset.

Funder

Mitacs Elevate Postdoctoral Fellowship

Holland Bloorview Kids Rehabilitation Hospital Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3