Optimization of Osmotic Dehydration of Seedless Guava (Psidium guajava L.) in Sucrose Solution using Response Surface Methodology

Author:

Ganjloo Ali,Rahman Russly A.,Bakar Jamilah,Osman Azizah,Bimakr Mandana

Abstract

Abstract In this study, osmotic dehydration of seedless guava was studied through response surface methodology. Seedless guava cubes were dehydrated in sucrose solution at different concentration (30–50% w/w), temperature (30–50°C) and immersion time (15–240 min) with respect to weight reduction, solid gain and water loss. A Box–Behnken design was used to determine the optimum processing conditions that yield maximum weight reduction, water loss and minimum solid gain. The models developed for all responses were significant (p<0.05). The response surface plots were constructed to show the interaction of process variables. Optimum process conditions were found to be sucrose concentration of 33.79% w/w, temperature of 30.00°C and immersion time of 240 min through desirability function method. At these optimum points, weight reduction, solid gain and water loss were found to be 0.189 (gg−1), 0.050 (gg−1) and 0.237 (gg−1), respectively.

Publisher

Walter de Gruyter GmbH

Subject

Engineering (miscellaneous),Food Science,Biotechnology

Reference72 articles.

1. On the experimental attainment ofoptimum conditions;Box;J R Stat Soc,1951

2. Optimization ofosmotic dehydration of diced green peppers by responsesurface methodology;Ozdemir;LWT – Food Sci Technol,2008

3. Mass transfer in mixed soluteosmotic dehydration of apple rings;Biswal;Trans ASAE,1992

4. Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution;Cárcel;J. Food Eng,2007

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3