Effect of geometrical variations on the structural performance of shipping container panels: A parametric study towards a new alternative design

Author:

Widiyanto Ilham1,Alwan Faiz Haidar Ahmad1,Mubarok Muhammad Arif Husni1,Prabowo Aditya Rio1,Laksono Fajar Budi2,Bahatmaka Aldias3,Adiputra Ristiyanto4,Smaradhana Dharu Feby5

Affiliation:

1. Department of Mechanical Engineering , Universitas Sebelas Maret , Surakarta 57126 , Indonesia

2. Department of Research and Development, DTECH-Engineering , Salatiga 50742 , Indonesia

3. Interdisciplinary Program of Marine Convergence Design , Pukyong National University , Busan 48513, South Korea

4. Department of Marine Systems Engineering , Kyushu University , Fukuoka 819-0395 , Japan

5. Department of Aeronautics, Imperial College London , London SW7 2AZ , United Kingdom of Great Britain and Northern Ireland

Abstract

Abstract In the field of logistics, containers are indispensable for shipments of large quantities of goods, particularly for exports and imports distributed by land, sea, or air. Therefore, a container must be able to withstand external loads so that goods can safely reach their destination. In this study, seven different models of container skins were developed: general honeycomb, cross honeycomb, square honeycomb, corrugated wall, flat, flat with a single stiffener, and flat with a cross stiffener. Testing was performed using the finite element method. In the static simulation, the best results were obtained by the model with corrugated walls. As the main element and the content of the sandwich panel structure, the core plays a role in increasing the ability of the structure to absorb force, thereby increasing the strength of the material. In the thermal simulation, the best results were obtained by the general honeycomb walls. Vibration simulations also showed that the square honeycomb design was better at absorbing vibration than the other models. Finally, the corrugated model had the best critical load value in the buckling simulation.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Aerospace Engineering,Building and Construction,Civil and Structural Engineering,Architecture,Computational Mechanics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3