Author:
Huang Chung-Ching,Truong Thanh-Cong,Chen Shen-Hong
Abstract
Abstract
This study develops an effective approach to measure real-time mold plate flexion, namely a displacement of a cavity plate. A mold-filling program was used to simulate the injection molding process. The predicted cavity pressure was then applied as an input for the subsequent mold deflection analysis. In this work, an amorphous polymethyl methacrylate (PMMA) was injection-molded into a 6-inch light guide plate (LGP) cavity, with cavity plate thicknesses of 35 mm, 55 mm, and 100 mm. To validate the predicted mold deflection, an inductive displacement sensor was placed underneath the cavity plate, and experiments were conducted using process variables identical to those of the simulation. Comparison between the simulated results and the experimental data shows that when the cavity plate thickness is reduced, the mold deformation increases significantly, and results in an increase in part thickness. In addition, an increase in packing pressure caused a rise in mold deformation. This study demonstrates that the proposed approach is able to measure the mold deflection.
Subject
Materials Chemistry,Polymers and Plastics,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献