Effect of vibration and cutting zone temperature on surface topography during hybrid cooling/lubrication assisted machining of Vanadis 10

Author:

Özbek Onur1,Altan Özbek Nursel2,Kara Fuat3ORCID,Saruhan Hamit3

Affiliation:

1. Gumusova Vocational School , Duzce University , Duzce , 81850 , Türkiye

2. Dr. Engin Pak Cumayeri Vocatioanl School , Duzce University , Duzce , 81700 , Türkiye

3. Department of Mechanical Engineering , Duzce University , Duzce , 81620 , Türkiye

Abstract

Abstract New alloy materials developed to meet the increasing technological needs of people come into our lives with some difficulties in terms of machinability. New cooling and lubrication techniques have been developed to facilitate the workability of such difficult-to-process materials and protect the world ecologically and the quality of the produced product. The workpiece used in this study, Vanadis 10 SuperClean, is a high vanadium alloyed powder metallurgy tool steel offering a unique combination of excellent abrasive wear resistance in combination with a good chipping resistance. The present study investigated the effects of dry, cryo, and CryoMQL cutting conditions on cutting tool vibration amplitude, cutting temperature, surface roughness, tool wear, and tool life in turning of Vanadis 10 tool steel used in the automotive industry. The experiments were performed using TiCN/Al2O3/TiN coated cemented carbide tools and cutting parameters as the constant depth of cut (1 mm), feed rates (0.08, 0.1, 0.12 mm rev−1), and cutting speeds (80, 100, 120 m min−1). The results obtained from experiments showed that spraying liquid nitrogen into the cutting zone provided significant improvements on cutting temperature, tool wear, cutting tool vibration amplitude, and surface roughness. The best results in terms of all output were achieved in the CryoMQL cutting environment. CryoMQL environment has reduced surface roughness up to 65.03 %, flank wear 56.99 %, cutting temperature 32.77 %, and cutting tool vibration amplitude up to 42.76 % compared to dry machining.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3