Comparisons of classification methods for viral genomes and protein families using alignment-free vectorization

Author:

Huang Hsin-Hsiung1,Hao Shuai2,Alarcon Saul2,Yang Jie2

Affiliation:

1. Department of Statistics , University of Central Florida , 4000 Central Florida Blvd , Orlando, FL 32816 , USA

2. Department of Mathematics, Statistics, and Computer Science , University of Illinois at Chicago , Chicago, IL , USA

Abstract

Abstract In this paper, we propose a statistical classification method based on discriminant analysis using the first and second moments of positions of each nucleotide of the genome sequences as features, and compare its performances with other classification methods as well as natural vector for comparative genomic analysis. We examine the normality of the proposed features. The statistical classification models used including linear discriminant analysis, quadratic discriminant analysis, diagonal linear discriminant analysis, k-nearest-neighbor classifier, logistic regression, support vector machines, and classification trees. All these classifiers are tested on a viral genome dataset and a protein dataset for predicting viral Baltimore labels, viral family labels, and protein family labels.

Publisher

Walter de Gruyter GmbH

Subject

Computational Mathematics,Genetics,Molecular Biology,Statistics and Probability

Reference30 articles.

1. Baltimore, D. (1971): “Expression of animal virus genomes,” Bacteriol. Rev. 35 (3), 235–241.

2. Chan, R. H., R. W. Wang and H. M. Yeung (2010): “Composition vector method for phylogenetics-a review,” Proc. 9th International Symposium on Operations Research and its Applications, 13–20.

3. Cortes, C. and V. Vapnik (1995): “Support-vector networks,” Machine Learning, 20, 273–297.

4. Darling, D. A. (1975): “Note on a limit theorem,” Ann. Probab. 3, 876–878.

5. Deng, M., C. Yu, Q. Liang, R. L. He, and S. S.-T. Yau (2011): “A Novel Method of Characterizing Genetic Sequences: Genome Space with Biological Distance and Applications,” PLoS One, 6 (3), e17293.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3