A new approach on lithium-induced neurotoxicity using rat neuronal cortical culture: Involvement of oxidative stress and lysosomal/mitochondrial toxic Cross-Talk

Author:

Yousefsani Bahareh Sadat12,Askian Romina3,Pourahmad Jalal3

Affiliation:

1. Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences , Tehran , Iran

2. School of Persian Medicine, Iran University of Medical Sciences , Tehran , Iran

3. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran , Iran

Abstract

Abstract Lithium (Li) is a widely-used medication for the treatment of patients with bipolar disorder. Li causes different complications. One of the most important adverse effects of Li is neurotoxicity. Neurotoxicity is usually irreversible which may lead to very important complications. The symptoms of Li-induced neurotoxicity include tremor, delirium, seizures, coma, and death. In this study, we wanted to evaluate the exact sub-cellular mechanisms of Li-induced neurotoxicity. For this purpose, we used primary neuronal cortical culture for investigating lithium-induced neurotoxicity. We applied the postnatal rat pups for isolating the cortical neurons. After that, we evaluated neural viability, neural reactive oxygen specious (ROS), lipid peroxidation, mitochondrial membrane potential (MMP), lysosomal membrane integrity (LMI), and reduced (GSH) and oxidized (GSSG) glutathione. Our results demonstrated that the cytotoxic effect of Li has mediated through lysosomal membrane leakage associated with ROS formation and reduction of MMP. Furthermore, the incubation of isolated neurons with Li caused rapid GSH depletion (as GSSG efflux) as another marker of cellular oxidative stress. We concluded that Li causes neurotoxicity in a dose-dependent manner. Besides, Li-induced neurotoxicity is a result of the generation of ROS and LP, which leads to mitochondrial/lysosomal toxic cross-talk.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3