Synthesis and study of magnesium complexes derived from polyacrylate and polyvinyl alcohol and their applications as superabsorbent polymers

Author:

Kadhim Saja A.12,Hameed Awham M.1,Rasheed Rashed T.1

Affiliation:

1. Applied Sciences Department, University of Technology-Iraq , Baghdad , Iraq

2. Second Rusafa Education, Ministry of Education , Baghdad , Iraq

Abstract

Abstract Novel superabsorbent polymers (SAPs) were created by solution polymerization at ambient temperature using potassium polyacrylate (KPA), polyvinyl alcohol (PVA), and magnesium chloride as a cross-linking agent with different weights of 0.4, 0.5, 0.6, 0.7, 0.8, and 1 g for KPA and 0.33, 0.44, 0.55, 0.733, and 1.1 g for PVA. Fourier transforms infrared (FTIR) and UV-Vis spectroscopy were used to determine the chemical composition of the SAP complexes. The outcomes revealed that the KPA and PVA successfully interacted with the magnesium chloride. The morphology of the surfaces shows a uniform porous interconnected microstructure as revealed by field emission scanning electron microscopy. The effective preparation was confirmed by thermal characterization (thermogravimetric analysis and differential scanning calorimetry) of the SAPs. The influence of the cross-linker agent on the SAPs’ water absorbency was examined. The magnesium polyacrylate (Mg-PA) (0.6 g of MgCl2) SAP has a maximum swelling capacity of 650%, while that of magnesium polyvinyl alcohol (Mg-PVA) (0.55 g of MgCl2) was 244%. The findings confirmed that the SAPs have excellent swelling and water-retaining capabilities. The strategy used in this investigation may function as a model for developing and widespread usage of SAPs in agriculture and horticulture.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Materials Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3