Affiliation:
1. Faculty of mathematics University of Belgrade Studentski trg 16 Belgrade Serbia
Abstract
Abstract
For n a power of two, we give a complete description of the cohomology algebra H
*(G͠
n,3; ℤ2) of the Grassmann manifold G͠
n,3 of oriented 3-planes in ℝ
n
. We do this by finding a reduced Gröbner basis for an ideal closely related to this cohomology algebra. Using this Gröbner basis we also present an additive basis for H
*(G͠
n,3; ℤ2).
Reference9 articles.
1. Bartík, V.—Korbaš, J.: Stiefel-Whitney characteristic classes and parallelizability of Grassmann manifolds, Rend. Circ. Mat. Palermo (2) 33(Suppl. 6) (1984), 19-29.
2. Basu, S.—Chakraborty, P.: On the cohomology ring and upper characteristic rank of Grassmannian of oriented 3-planes, J. Homotopy Relat. Struct. 15 (2020), 27-60.
3. Becker, T.—Weispfenning, V.: Gröbner Bases: A Computational Approach to Commutative Algebra . Grad. Texts in Math., Springer-Verlag, New York, 1993.
4. Borel, A.: La cohomologie mod 2 de certains espaces homogènes, Comm. Math. Helv. 27 (1953), 165–197.
5. Fukaya, T.: Gröbner bases of oriented Grassmann manifolds, Homol. Homotopy Appl. 10(2) (2008), 195–209.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献