The mod 2 cohomology rings of oriented Grassmannians via Koszul complexes

Author:

Matszangosz Ákos K.,Wendt Matthias

Abstract

AbstractWe study the structure of mod 2 cohomology rings of oriented Grassmannians $$\widetilde{{\text {Gr}}}_k(n)$$ Gr ~ k ( n ) of oriented k-planes in $${\mathbb {R}}^n$$ R n . Our main focus is on the structure of the cohomology ring $$\textrm{H}^*(\widetilde{{\text {Gr}}}_k(n);{\mathbb {F}}_2)$$ H ( Gr ~ k ( n ) ; F 2 ) as a module over the characteristic subring C, which is the subring generated by the Stiefel–Whitney classes $$w_2,\ldots ,w_k$$ w 2 , , w k . We identify this module structure using Koszul complexes, which involves the syzygies between the relations defining C. We give an infinite family of such syzygies, which results in a new upper bound on the characteristic rank of $$\widetilde{{\text {Gr}}}_k(2^t)$$ Gr ~ k ( 2 t ) , $$k<2^t$$ k < 2 t , and formulate a conjecture on the exact value of the characteristic rank of $$\widetilde{{\text {Gr}}}_k(n)$$ Gr ~ k ( n ) . For the case $$k=3$$ k = 3 , we use the Koszul complex to compute a presentation of the cohomology ring $$H=\textrm{H}^*(\widetilde{{\text {Gr}}}_3(n);{\mathbb {F}}_2)$$ H = H ( Gr ~ 3 ( n ) ; F 2 ) for $$2^{t-1}<n\le 2^t-4$$ 2 t - 1 < n 2 t - 4 for $$t\ge 4$$ t 4 , complementing existing descriptions in the cases $$n=2^t-i$$ n = 2 t - i , $$i=0,1,2,3$$ i = 0 , 1 , 2 , 3 for $$t\ge 3$$ t 3 . More precisely, as a C-module, H splits as a direct sum of the characteristic subring C and the anomalous module H/C, and we compute a complete presentation of H/C as a C-module from the Koszul complex. We also discuss various issues that arise for the cases $$k>3$$ k > 3 , supported by computer calculation.

Funder

HUN-REN Alfréd Rényi Institute of Mathematics

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3