Abstract
AbstractThe most important component of quantum optics is laser interference. Interference patterns are formed by splitting a coherent beam into multiple beams and correlating them. This study introduces a variety of beam correlators and discusses their characteristics. Beam correlator basics such as interference region in terms of pulse width, group delay dispersion effects on pulse width, optical delay adjustment, and interference pattern simulation are explained. A discussion of the history of interference processing begins with the method in 1967 and continues through the advancement of shorter wavelengths and pulse widths. The recent techniques of solid-liquid-solid for 3D nanofabrication, duplicated structures with laser-induced periodic surface structure, processing inside transparent materials, and 2D and 3D periodic structures fabricated by photo-sensitization are also presented.
Subject
Instrumentation,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Reference68 articles.
1. A;Nakata;Appl Phys Mater Sci Process,2010
2. Japanese Physics Part;Nakata;Appl,1452
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献