A stochastic model, simulation, and application to aggregation of cadmium sulfide nanocrystals upon evaporation of the Langmuir–Blodgett matrix

Author:

Svit Kirill1,Zhuravlev Konstantin1,Kireev Sergey2,Sabelfeld Karl K.2ORCID

Affiliation:

1. Rzhanov Institute of Semiconductor Physics , Siberian Branch of Russian Academy of Sciences , Lavrentiev str. 13, 630090 Novosibirsk , Russia

2. Institute of Computational Mathematics and Mathematical Geophysics , Russian Academy of Sciences , Lavrentiev str. 6, 630090 Novosibirsk ; and Novosibirsk State University, Novosibirsk , Russia

Abstract

Abstract A stochastic model of nanocrystals clusters formation is developed and applied to simulate an aggregation of cadmium sulfide nanocrystals upon evaporation of the Langmuir–Blodgett matrix. Simulations are compared with our experimental results. The stochastic model suggested governs mobilities both of individual nanocrystals and its clusters (arrays). We give a comprehensive analysis of the patterns simulated by the model, and study an influence of the surrounding medium (solvent) on the aggregation processes. In our model, monomers have a finite probability of separation from the cluster which depends on the temperature and binding energy between nanocrystals, and can also be redistributed in the composition of the cluster, leading to its compaction. The simulation results obtained in this work are compared with the experimental data on the aggregation of CdS nanocrystals upon evaporation of the Langmuir–Blodgett matrix. This system is a typical example from real life and is noteworthy in that the morphology of nanocrystals after evaporation of the matrix cannot be described exactly by a model based only on the motion of individual nanocrystals or by a cluster-cluster aggregation model.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3