Abstract
AbstractLow-cycle fatigue (LCF) of spruce under parallel-to-grain compression was investigated to simulate the damage that occurs during extreme events such as hurricanes. Load control was used, with peak stress levels of 75%, 85% and 95% of static compressive strength (Cmax). Changes in the residual cyclic modulus, cyclic creep strain and modified work density were correlated with the number of load cycles to assess their suitability as damage indicators. Creep tests were also carried out and the strain compared with cyclic creep strain under LCF load. Fatigue and creep tests had a total duration of 10 min. A three-element mathematical model was used to predict the cyclic creep strain. Some key findings were that: (1) the residual cyclic modulus varies with the number of load cycles at a given stress level and decreases with an increase in stress level; (2) cyclic creep strain and pure creep strain are strongly influenced by the peak stress level; and creep specimens fail but fatigue specimens do not at a 95% peak stress level; and (3) the three-element mathematical model is appropriate for predicting cyclic creep strain.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献