Fatigue behavior of Japanese cypress (Chamaecyparis obtusa) under repeated compression loading tests perpendicular to the grain

Author:

Ogawa Keita,Shimizu Kosuke,Yamasaki Mariko,Sasaki Yasutoshi

Abstract

Abstract The purpose of this study was to gain an in-depth understanding of the fatigue behavior of Japanese cypress as a result of compression. Repeated compression loading tests were conducted on small clear wood specimens in the form of a pulsating triangular wave of frequency 1.0 Hz, and 864000 repeated loading cycles were performed. The change in stiffness and the maximum strain (STRmax) with repeated loadings were investigated, based on the stress-strain relationship obtained from the test. Stiffness hardly changed under conditions of low stress levels (SLs), even under repeated loading. STRmax increased exponentially as the number of loading cycles increased. Furthermore, the fatigue limit was predicted by analyzing the change of STRmax with repeated loading. According to the analysis, the fatigue limit was revealed to be approximately 60% of the SL (standardizing the stress when the strain is 0.05 under static load).

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Reference36 articles.

1. Fatigue properties of wood and wood composites;Int. J. Fracture,1980

2. Theoretical estimation of the mechanical performance of traditional mortise-tenon joint involving a gap;J. Wood. Sci.,2016b

3. Fatigue and hysteresis effects in wood-based panels under cyclic shear load through thickness;Wood Fiber Sci.,2006

4. Fatigue strength and allowable stresses for some wood composites used in furniture;Holz Roh Werkst.,1996

5. Rotational performance of traditional Nuki joints with gap I: theory and verification;J. Wood Sci.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3