Thermal characteristics of birch and its cellulose and hemicelluloses isolated by alkaline solution

Author:

Qi Chusheng1,Hou Suyun1,Lu Jianxiong23,Xue Weiwei1,Sun Ke1

Affiliation:

1. MOE Key Laboratory of Wooden Material Science and Application , Beijing Forestry University , Beijing, 100083 , PR China

2. Central South University of Forestry and Technology , Hunan Collaborative Innovation Center for Effective Utilizing of Wood & Bamboo Resources , Changsha, 410004 , PR China

3. Research Institute of Wood Industry of Chinese Academy of Forestry , Hunan Collaborative Innovation Center for Effective Utilizing of Wood & Bamboo Resources , Beijing, 100091 , PR China

Abstract

AbstractCellulose and hemicelluloses were isolated from birch wood using a dilute alkaline solution and then consolidated into pellets as model compounds of cellulose and hemicelluloses in the wood cell wall. The purity of isolated cellulose and hemicelluloses was examined by Fourier-transform infrared spectroscopy and thermogravimetric analysis. The density, thermal diffusivity, heat capacity, and thermal conductivity were experimentally determined for consolidated birch powder, cellulose, and hemicelluloses in over-dry condition. The thermal degradation kinetic parameters of these materials were successfully calculated using a conversion rate step of 0.01, and the relationship with conversion rate was established. The results show that cellulose and hemicelluloses consolidated under 25 MPa had densities of 1362 kg/m3and 1464 kg/m3, respectively. The cell wall of birch powder in the oven-dry state was not collapsed under 25 MPa. The thermal diffusivity of consolidated birch powder, cellulose, and hemicelluloses linearly decreased with temperature, with values of 0.08, 0.15, and 0.20 mm2/s at room temperature, respectively. The specific heat capacity (1104, 1209, and 1305 J/(kg·K) at 22 °C, respectively) and thermal conductivity (0.09, 0.24, and 0.38 W/(m·K) at 22 °C, respectively) linearly increased with temperature, except for those for hemicelluloses which exhibited a nonlinear relationship with temperature above 120 °C, and their linear experimental prediction equations were given. Birch cellulose was more thermally stable than hemicelluloses. The thermal degradation kinetic parameters including activation energy and pre-exponential factor of birch powder, cellulose, and hemicelluloses varied with the conversion rate and calculation methods, with average activation energy in a conversion rate range of 0.02–0.15 of 123.2, 159.0, and 147.2 kJ/mol, respectively (using the Flynn–Wall–Ozawa method), for average natural logarithm pre-exponential factors of 25.0, 33.1, and 28.7 min−1, respectively. Linear and quadratic equations were fitted to describe the relationship between the kinetic parameters and conversion rates. These results give comprehensive thermal properties of the densified cellulose and hemicelluloses isolated from a specific wood.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3