
木质素分离及主要物理和力学性能的研究进展
Research progress in isolation, main physical and mechanical properties of wood lignin
木质素是木材细胞壁的重要组成成分, 其吸湿特性、热特性、力学特性等在木材的微宏观尺度相互影响, 并对其高值化应用起决定性作用。本文从分子结构、分离方法、吸湿特性、热特性、力学特性五个方面综述了木材木质素的研究进展。木材木质素是高异质、不规则的三维网状高分子结构, 相比原位木质素, 不同分离方法的分离木质素有不同程度的解聚缩合, 导致分离木质素分子结构、吸湿性、热特性、力学特性存在差异性。木材木质素具有近似S型等温吸附曲线且存在吸湿滞后现象, 平衡含水率在20%(质量分数)以下, 可用BET, GAB理论定性描述和定量分析单层水分子吸附量。木材木质素在低温时具有高分子塑性特征, 玻璃化转变温度为90~160 ℃, 高温度时具有热固性特性并发生热分解, 先后发生α-O-4、β-O-4、脂肪烃碳碳键、5-5、4-O-5键断裂, 类原位木质素活化能为82~150 kJ/mol。木质素在力学特性上各向同性, 弹性模量总体随含水率的增大而减小, 弹性模量为2.8~9.0 GPa, 剪切模量为1.1~2.3 GPa, 但研究范围局限在弹性阶段。在原位木质素绿色高效分离方法、木质素分子结构序列和木质素弹塑性力学性能等方面有待进一步深入研究。
Lignin is an important component of wood cell wall, and its moisture absorption characteristics, thermal characteristics, and mechanical characteristics influence each other at the micro-macro scale of wood, and play a decisive role in its high-value application. In this paper, the research progress of wood lignin was reviewed from five aspects: molecular structure, separation methods, moisture absorption characteristics, thermal characteristics and mechanical characteristics. Wood lignin is a highly heterogeneous and irregular three-dimensional network polymer structure. Compared with in-situ lignin, the lignin separated by different separation methods has different degrees of depolymerization condensation, which leads to differences in molecular structure, hygroscopicity, thermal properties and mechanical properties. Wood lignin has an approximate S-shaped isothermal adsorption curve and there is a hysteresis phenomenon of moisture absorption. The equilibrium moisture content is below 20%(mass fraction), and the BET and GAB theories can be used to qualitatively describe and quantitatively analyze the adsorption capacity of monolayer water molecules. Wood lignin has high polymer plasticity at low temperatures with a glass transition temperature of 90-160 ℃, and has a thermosetting property and thermal decomposition at high temperature, with α-O-4, β-O-4, carbon-carbon linkages of aliphatic hydrocarbons, 5-5 and 4-O-5 linkages breaking successively, and the activation energy of pseudo in-situ lignin is 82-150 kJ/mol. The mechanical properties of lignin are isotropic, and the elastic modulus is decreased with the increase of moisture content, with the elastic modulus of 2.8-9.0 GPa and the shear modulus of 1.1-2.3 GPa, but the research scope is limited to the elastic stage. The green and efficient separation method of in-situ lignin, the molecular structure sequence of lignin and the elastic-plastic mechanical properties of lignin need to be further studied.
木材木质素 / 分子结构 / 热特性 / 吸湿特性 / 力学特性 {{custom_keyword}} /
wood lignin / molecular structure / thermal characteristic / hygroscopic property / mechanical property {{custom_keyword}} /
Species | Linkage | Characteristic | |
Ether linkage | Alkyl-aryl ether linkages | β-O-4(50%-60%) | Linkage is divided into erythro and soviet configurations, and is unstable and easy to fracture |
α-O-4 | Linkages are unstable and easy to break | ||
γ-O-4 | |||
Diaryl ether linkage | 4-O-5(5%) | Linkages are relatively stable | |
Dialkyl ether linkage | α-O-γ | ||
Carbon-carbon linkage(15%-25%) | β-5 | Linkage generally exits in G-type wood units with stable chemical linkage and condensation structure | |
β-β | Linkage is stable and generally exits in S-shaped units | ||
β-1 dienone spiral | Linkage is stable, rare and complex | ||
5-5 | Linkage is stable and less abundant and is easy to form a branched chain structure |
Location | Functional group | Characteristic |
Benzene ring | Methoxy group | This group is stable but can be oxidized by strong oxidant, and its number and location have a significant influence on its characteristics |
Phenolic hydroxyl group | This group affects the degree of lignin etherification and condensation | |
Aliphatic hydrocarbon | Methoxy group | This group is easy to split and connect with other alkyl and aryl groups to form ether |
Alcoholic hydroxyl group | This group is hydrophilic and is easy to oxidize | |
Carbon-carbon double bond | It is easy to occur oxidation color reaction | |
Carbanyl group | Conjugated carbonyl can stabilize lignin | |
Carboxyl | This group often exists in oxidized lignin |
Separation method | Category | Name | Molecular characteristic |
Insoluble lignin | Acid lignin | Klason lignin | Chemical properties of lignin changed greatly and the lignin was highly condensed during separation. This method is generally used for the determination of lignin content in plants |
Hydrochloric acid lignin | Large condensation occurs and the relative molecular mass is large | ||
Periodate lignin | Purves lignin | It has abundant linkage types, and hydroxyl and methoxyl groups are oxidized to form carboxyl group | |
Soluble lignin | Ionic liquids lignin | ILL lignin | β-O-4 linkage is partially broken with abundant phenolic hydroxyl groups. The relative molecular weight is lower than that of DES lignin |
Deep eutectic solvents lignin | DES lignin | It includes abundant linkage types with β-O-4 and C—C linkages partially broken and condensation reaction | |
Inorganic reagent lignin | Lignosulfonate | α, β ether linkages are partially broken with sulfonate ions and a small amount of catechol retain and a relative molecular weight of 20000-50000 | |
Alkali lignin andlignin sulfonate | α, β-alkyl ether linkages and α-aryl ether linkages break with a relative molecular weight of 3000-5000. Condensation reaction occurs during isolation and the catechol structure is generated | ||
Organic solvent lignin | Formic acid lignin | β-O-4 linkage partially breaks, and the ether linkage is decomposed by oxidation with a molecular weight of 832-5879 | |
Ethanol lignin | α, β-aryl ether linkages are broken | ||
Dioxane lignin | α, β-aryl ether linkages and α-alkyl ether linkages are broken | ||
Neutral solvent lignin | Brauns lignin | Abundant linkages are retained, but lignin only represents low molecular weight in-situ lignin | |
Milled wood lignin | Linkages are completed and abundant with β-O-4 linkage partially broken | ||
Cellulolytic enzyme lignin | Linkage types are completed and abundant with β-O-4 linkage partially broken |
表 4 木材木质素分离方法的优缺点Table 4 Advantages and disadvantages of wood lignin separation methods |
Category | Name | Advantage | Disadvantage |
Industrial lignin | ILL lignin | Similar to MWL, ILL lignin has better thermal stability than alkali lignin with short production period and industrial production potential | Solvent is toxic and expensive, ILL lignin has lower molecular weight and more phenolic hydroxyl groups |
DES lignin | Solvent is cheap, non-toxic and biodegradable, and DES lignin has high yield, short production period, and industrial production potential | Molecular weight distribution is wide with low molecular weight | |
Alkali lignin andLignin sulfate | Lignin is pulp and paper industry byproduct with mature technology and large yield | With a purity of 40%-45%, selement, lignin isn’t conducive to later chemical modification for low chemical activity | |
Lignosulfonate | Lignin is large yield, high molecular weight, and soluble in water but insoluble in organic solvents | Lignin has purity of 50% to 55% with sulfonic acid group | |
Formic acid lignin | Purity is higher than that of lignin, which is a by-product of papermaking, and formic acid solution can be recycled | Structure has undergone a great change | |
Pseudo in-situ lignin | Brauns lignin | Molecular structure is similar to that of in-situ lignin | Low molecular weight and low yield |
Milled wood lignin | With high purity of > 90%, the lignin has small molecular structure change | Yield is low, and the separation process was complicated and the reaction conditions are harsh | |
Cellulolytic enzyme lignin | Lignin has high yield of about 100%, high purity of > 90%, and abundant and complete linkage type | With long reaction cycle, the lignin is not suitable for mass production |
表 5 木材木质素玻璃化转变温度Table 5 Glass transition temperature of wood lignin |
Species | Moisture content/% | Glass transition temperature/℃ | Reference |
Periodate lignin(birch) | 12.2 | 128 | [1] |
0 | 179 | ||
dioxane lignin(Chinese fir) | 7.2 | 92 | |
0 | 146 | ||
Double enzymatic lignin(brich) | 0 | 132.5 | [56] |
Double enzymatic lignin(Chinese fir) | 0 | 137.2 | |
Milled wood lignin | 141-159 | [59] | |
Klason lignin | 100-130 | [60] | |
Kraft lignin | 114-124 | [60] | |
Alkali lignin | 158 | [61] | |
Organic solvent lignin | 144 | [62] | |
lignin sulfonate | 135 | [63] |
表 6 木材木质素热分解动力学参数Table 6 Pyrolysis kinetic parameters of wood lignin |
Species | Percent conversion | Temperature/℃ | Active energy, Ea/(kJ·mol) | Pre-exponential factor, ln(A/min-1) | Reference |
Klason lignin(maple) | 148-268295-494 | 20.6138.92 | 7.5810.90 | [30] | |
Klason lignin(Chinese fir) | 150-308312-518 | 19.9547.00 | 6.9011.88 | ||
Double enzymatic lignin(brich) | 0.02-0.60 | 90-148112.7 | 17-3322.9 | [56] | |
Double enzymatic lignin(Chinese fir) | 0.02-0.60 | 134-150 | 26-34 | ||
Klason lignin(beech) | 151.1 | 26.80 | [72] | ||
Klason lignin(willow) | 156.5 | 27.82 | |||
Organic solvent lignin(hard wood) | 144.2 | 25.68 | |||
Alkali lignin | 0.1-0.5 | 300-350 | 120-143128 | [73] | |
Milled wood lignin(maple) | 500-1000 | 82 | 20.91 | [74] | |
Milled wood lignin | 148.7 | 28.5 | [75] |
表 7 木材木质素力学参数Table 7 Mechanical parameters of wood lignin |
Species | Test method | Moisture content/% | Elasticity modulus/GPa | Shear modulus/GPa | Poisson’sratio | Reference |
Nano alkali lignin | Atomic force microscope | 0.024 | 9 | [52] | ||
9.1 | 4.3 | |||||
17.3 | 2.4 | |||||
Chinese fir | In-situ stretching method | 10 | 2.8 | [77] | ||
Dioxane lignin | Continuous ball indentation method | 3 | 3.3 | [78] | ||
Periodate lignin | 3.6 | 6.6 | [79] | |||
12 | 3 | |||||
17.3 | 2.8 | |||||
Periodate lignin | Stretching method | 3.6 | 6.7 | 2.1 | [80] | |
12 | 3.1 | 1.2 | ||||
Klason lignin | 3 | 4 | 1.5 | |||
12 | 2.3 | 1.1 | ||||
Bamboo | Model prediction | 5.9 | [81] | |||
Spruce | 5 | 2.3 | [82] | |||
Soft wood | 4.18 | 1.61 | [83] | |||
Balsa | 5.68 | 2.06 | 0.38 | [84] | ||
Crop stem | 5.25 | 0.33 | [85] |
1 |
蒋挺大. 木质素[M]. 北京: 化学工业出版社, 2008: 49.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
苏秀茹, 傅英娟, 李宗全, 等. 木质素的分离提取与高值化应用研究进展[J]. 大连工业大学学报, 2021, 40(2): 107- 115.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
黄曹兴, 何娟, 梁辰, 等. 木质素的高附加值应用研究进展[J]. 林业工程学报, 2019, 4(1): 17- 26.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
马明国, 袁琪. 基于木质素的多功能材料应用研究进展[J]. 广东工业大学学报, 2022, 39(1): 14- 20.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
孙永昌. 木质素高效分离、结构表征及基于离子液体的降解机理研究[D]. 北京: 北京林业大学, 2014.
SUN Y C. Efficient separation and structural characterization of lignin, and lignin degradation in ionic liquid-based systems[D]. Beijing: Beijing Forestry University, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
姜波, 金永灿. 基于木质素分子结构特性的功能材料研究进展[J]. 复合材料学报, 2022, 39(7): 3059- 3083.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
文甲龙, 陈天影, 孙润仓. 生物质木质素分离和结构研究方法进展[J]. 林业工程学报, 2017, 2(5): 76- 84.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
王汉敏. 速生桉木/杨木木质素结构解译与PBAT复合材料制备研究[D]. 北京: 北京林业大学, 2021.
WANG H M. Structural elucidation of lignin from fast-growing eucalyptus/poplar and the fabrication of lignin/PBAT composites[D]. Beijing: Beijing Forestry University, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
陈天影. 基于生物炼制木质素新型分离方法构建及其结构解析[D]. 北京: 北京林业大学, 2020.
CHEN T Y. Novel separation method construction and structure analysis of lignin based on biorefinery[D]. Beijing: Beijing Forestry University, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
王婷. 云杉、桉木原本木质素和分离-质素中酚羟基含量的测定研究[D]. 南宁: 广西大学, 2018.
WANG T. Study on determination of phenolic hydroxyl group content in protolignin as well as in isolated lignins from spruce and eucalyptus[D]. Nanning: Guangxi Universtiy, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
李忠正. 可再生生物质资源——木质素的研究[J]. 南京林业大学学报(自然科学版), 2012, 36(1): 1- 7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
赵保成. 巨尾桉细胞壁木质素及木质素碳水化合物复合体(lcc)结构解析[D]. 北京: 北京林业大学, 2018.
ZHAO B C. Structural elucidation of lignin and lignin-carbohydrate complex (LCC) from eucalyptus grandis x E. urophylla[D]. Beijing: Beijing Forestry University, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
周强, 王秀文, 沈德魁. Klason法木质素慢速热解特性及其动力学机理研究[J]. 太阳能学报, 2016, 37(9): 2236- 2242.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
程贤甦, 陈云平, 吴耿云, 等. 高沸醇木质素的研究进展[J]. 化工进展, 2006, 25(2): 147- 151.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
靳福明. 低木质素含量黑液碱回收工程技术应用研究[D]. 广州: 华南理工大学, 2018.
JIN F M. Study on the engineering application of lignin lean black liquor recovery[D]. Guangzhou: South China University of Technology, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
李忠正. 禾草类纤维制浆造纸[M]. 北京: 中国轻工业出版社, 2013: 208- 240.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
时兰兰. L-半胱氨酸木质素的分离及其加氢裂解性能的研究[D]. 广州: 华南理工大学, 2021.
SHI L L. L-cysteine assisted isolation of lignin and its hydrogenolysis[D]. Guangzhou: South China University of Technology, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
岳凤霞. 木质素新型模型物的合成及其在木质素结构研究中的应用[D]. 广州: 华南理工大学, 2012.
YUE F X. Syntheses of new lignin-related model compounds and their uses for structural characterization of lignin[D]. Guangzhou: South China University of Technology, 2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
谢丽霞, 胡文冉, 范玲. 二氧六环/水溶液处理对棉花纤维结构形态及木质素的影响[J]. 新疆农业科学, 2016, 53(8): 1383- 1389.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
解云焕. 基于时域核磁共振技术的纤维素吸湿机理研究[D]. 呼和浩特: 内蒙古农业大学, 2015.
XIE Y H. Study of water adsorption mechanism in cellulose based on time-domain nuclear magnetic resonance[D]. Huhhot: Inner Mongolia University, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
50 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
51 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
52 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
53 |
王金月. 酶解磨木木质素的热特性及物理力学性能表征与模拟[D]. 北京: 北京林业大学, 2022.
WANG J Y. Characteristics and modeling of thermal properties and physical and mechanical properties of enzymatic and ball-milled wood lignin[D]. Beijing: Beijing Forestry University, 2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
54 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
55 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
56 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
57 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
58 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
59 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
60 |
ADRIANA A. Application of differential scanning calorimetry to the characterization of biopolymers[M]//InTech, 2013: 3-20.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
61 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
62 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
63 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
64 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
65 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
66 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
67 |
武继来. 典型木质素结构分析及催化热解制备芳烃研究[D]. 青岛: 青岛科技大学, 2020.
WU J L. Structural analysis of typical lignin and study on the preparation of aromatics by catalytic pyrolysis[D]. Qingdao: Qingdao University of Science & Technology, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
68 |
王则祥, 李航, 谢文銮, 等. 木质素基本结构、热解机理及特性研究进展[J]. 新能源进展, 2020, 8(1): 6- 14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
69 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
70 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
71 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
72 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
73 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
74 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
75 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
76 |
陈志勇, 祝恩淳, 潘景龙. 复杂应力状态下木材力学性能的数值模拟[J]. 计算力学学报, 2011, 28(4): 629- 634.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
77 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
78 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
79 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
80 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
81 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
82 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
83 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
84 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
85 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
86 |
PERSSON K. Micromechanical modelling of wood and fibre properties[D]. Lund: Lund University, 2000.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |