Abstract
Abstract
Additive manufacturing techniques enable the fabrication of new lightweight components with tailored mechanical properties. Considering current application fields, components are often over-dimensioned since a lack of data regarding the mechanical properties under compression or tensile loading at high strain rates is present. In this work, the influence of various strain rates on the mechanical properties of electron beam powder bed fusion Ti6Al4V lattice structures was investigated. In order to capture the damage mechanisms that occurred, a single unit cell plane was considered. In terms of mechanical characterization, high-speed tensile tests at nominal strain rates from 0.025 to 250 s-1 were carried out. By the additional use of a high-speed camera system and subsequent digital image correlation, an investigation of material reactions during shortest test times was enabled. Based on the results, a positive strain rate dependency was identified for yield and ultimate tensile strength for both investigated lattice types. In detail, an increase in ultimate tensile strength of 16 % for BCC- and 20 % for F2CCZ-specimens could be detected.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献