Numerical prediction of cavitation phenomena on marine vessel: Effect of the water environment profile on the propulsion performance

Author:

Yusvika Muhammad1,Fajri Aprianur1,Tuswan Tuswan2,Prabowo Aditya Rio1,Hadi Syamsul1,Yaningsih Indri1,Muttaqie Teguh3,Laksono Fajar Budi4

Affiliation:

1. Department of Mechanical Engineering, Universitas Sebelas Maret , Surakarta , Indonesia

2. Department of Naval Architecture, Universitas Diponegoro , Semarang , Indonesia

3. Research Center of Hydrodynamics Technology, National Research and Innovation Agency of Indonesia (BRIN) , Jakarta , Indonesia

4. Department of Research and Development, DTECH Inovasi Indonesia Co. Ltd. , Salatiga , Indonesia

Abstract

Abstract Energy-saving and emission reduction are crucial since shipping activity due to the global maritime trade has increased exponentially. Several agreements have been engaged to optimize ship energy efficiency composed of ship design and shipping operation planning. However, most up-to-date studies focused on speed and route optimization. The interaction analysis between speed and route efficiency below varied environmental conditions is limited. To attain energy and cost efficiency, a study of cavitation on the propeller that considers the ocean environmental condition will be discussed in this work. Although researchers have previously observed cavitation phenomena, the predictability of simulations is not yet such that problems can be eliminated. Since the multiphase flow of water and vapor is sensitive to environmental conditions, it leads to varying observation accuracy. Thus, the current paper proposes a new performance indicator of the ship propeller under cavitation predicted by computational fluid dynamics (CFD). CFD-based simulation to observe the propeller cavitation was used to model the Zwart cavitation and Kunz cavitation models under two turbulence models of Kε at different flow conditions and operating environments. Initial validation tests between experimental and numerical simulation show good agreement with a mean error of 4.7% in the Zwart model and 3.7% in the Kunz model, where the kε turbulence model provides an almost higher relative error. It is revealed from the result that the increase in temperature causes the rise in the cavitation problem. It is revealed from the result that the increase of temperature causes the increase in cavitation problem.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Aerospace Engineering,General Materials Science,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3