Effect of waste materials on soil properties

Author:

Saleem Hiba D.1,Al Quraishi Murtdha H.1,Imariq Saleem M.1,Shamkhi Mohammed S.2

Affiliation:

1. Department of Civil Engineering, College of Engineering, Wasit University , Wasit , Iraq

2. Department of Structures and Water Resources, University of Kufa , Najaf , Iraq

Abstract

Abstract Industrial processes are the main generator of littering agents, and the growing environmental awareness has contributed to a focus on the issue of littering. One of the biggest environmental issues in the world is how to manage this waste given the limited space available, the high cost of remediation, and the need for landfilling. However, the idea of reusing some of this waste is an alternative solution to decreasing the process of landfilling, and reducing the increase of waste. In this research, three different waste materials were used, namely plastic waste, aluminum waste, and silica sand. Each of these materials was mixed in a ratio of 1, 3, and 5%, with silty sand soil. The consistency limits of maximum dry density and the optimal ratio for the preferred materials were determined by examining and comparing cohesiveness and angle of internal friction. Research results showed that the maximum unit weight decreased after adding the waste materials: it decreased by 9.35 and 11.69% when 5% each of aluminum and plastic waste was added, respectively. At the same time, the increase in the inner angle of internal friction reached 26.41% at the highest percentage of plastic waste. The addition of 3% of silica sand gave the highest value of cohesion, and the increase reached 218.7% for soils not treated with silica. It also showed the effect of adding 1% of silica sand on the plasticity, reducing it by 72.7% from its original value.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Aerospace Engineering,General Materials Science,Civil and Structural Engineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3