Effects of Plastic Waste Materials on Geotechnical Properties of Clayey Soil

Author:

Hassan Hussein Jalal AswadORCID,Rasul JabarORCID,Samin Maleaha

Abstract

AbstractRecently, the use of plastic products, such as polyethylene (PE) bottles and polypropylene (PP), has been significantly increased, which may lead to many environmental issues. Therefore, it is important to find methods to manage these waste materials without causing any ecological hazards. One of these methods is to use plastic wastes as soil stabiliser materials. In this study, PE and PP have been used in the form of fibres. The effect of the stabilisation was evaluated through carrying out standard laboratory tests. These tests have been conducted on natural and stabilised soils with four fibre contents (1%, 2%, 3%, and 4%) of the soil weight. The tests included the standard compaction test, unconfined compressive strength (UCS) test, California Bearing Ratio (CBR) test, and resilient modulus (Mr) tests. In all these tests, the fibre content was added in two lengths, which were 1.0 cm and 2.0 cm. Laboratory test results revealed that the plastic pieces decrease maximum dry density (MDD) and optimum moisture content (OMC) of the stabilised soils, which are required for the construction of embankments of lightweight materials. In addition, there was a significant improvement in the UCS of soils by 76.4 and 96.6% for both lengths of PE fibres and 57.4% and 73.0% for both lengths of PP fibres, respectively. Results of the CBR tests demonstrated that the inclusion of plastic fibres in clayey soils improves the strength and deformation behaviour of the soil especially with 4% fibre content for both lengths 1.0 cm and 2.0 cm, respectively, to a figure of 185 to 150% for PE and PP, respectively. Furthermore, the results of the Mr tests demonstrated that the mechanical properties improved to an extent. For an increase in fibre content, the resilient modulus increased by about 120% at 4% fibre content for PE. However, for PP, improvement in resilient modulus declined at 3% fibre content. Therefore, for soil stabilisation with fibre material, optimum fibre content shall be sought.

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology,Transportation,Civil and Structural Engineering,Environmental Engineering

Reference64 articles.

1. Ahmadinia, E., Zargar, M., Karim, M., Abdelaziz, M., Ahmadinia, E.: Performance evaluation of utilization of waste polyethylene terephthalate (PET) in stone mastic asphalt. Constr. Build. Mater. 36(2012), 984–989 (2012)

2. AlAfandi, Z.M.S.: Effect of polyethylene waste fibres on strength of cement stabilized clayey soil. J. Univ. Duhok. 18(1) Pure and Eng. Sciences, 1–12 (2015)

3. Arulrajah, A., Yaghoubi, E., Arulrajah, A., Wong, Y.C., Horpibulsuk, S.: Recycled plastic granules and demolition wastes as construction materials: resilient moduli and strength characteristics. Constr. Build. Mater. 147(2017), 639–647 (2017)

4. Ashraf, A., Sunil, A., Dhanya, D., Joseph, M., Joseph, M., Veena, M, (2011) Soil stabilisation using raw plastic bottles. Proceedings of Indian Geotechnical Conference December 15–17, 2011, Kochi (Paper No. H-304).

5. Awuchi, C.G.: Impacts of plastic pollution on the sustainability of seafood value chain and human health. Int. J. Adv. Acad. Res. 5(11), 46–138 (2019)

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3