Multiple positive solutions for a boundary value problem with nonlinear nonlocal Riemann-Stieltjes integral boundary conditions

Author:

Padhi Seshadev1,Graef John R.2,Pati Smita3

Affiliation:

1. Department of Mathematics Birla Institute of Technology Mesra , Ranchi - 835215 , India

2. Department of Mathematics University of Tennessee at Chattanooga Chattanooga , TN 37403 - USA

3. Department of Mathematics Amity University Ranchi - 834001 , India

Abstract

Abstract In this paper, we study the existence of positive solutions to the fractional boundary value problem D 0 + α x ( t ) + q ( t ) f ( t , x ( t ) ) = 0 , 0 < t < 1 , $$\begin{array}{} \displaystyle D^{\alpha }_{0+}x(t)+q(t)f(t,x(t))=0, \,\, 0\lt t \lt1, \end{array}$$ together with the boundary conditions x ( 0 ) = x ( 0 ) = = x ( n 2 ) ( 0 ) = 0 , D 0 + β x ( 1 ) = 0 1 h ( s , x ( s ) ) d A ( s ) , $$\begin{array}{} \displaystyle x(0)=x^{\prime}(0)= \cdots = x^{(n-2)}(0)=0, D_{0+}^{\beta }x(1)= \int^{1}_{0}h(s,x(s))\,dA(s), \end{array}$$ where n > 2, n – 1 < αn, β ∈ [1,α – 1], and D 0 + α $\begin{array}{} \displaystyle D^{\alpha }_{0+} \end{array}$ and D 0 + β $\begin{array}{} \displaystyle D^{\beta }_{0+} \end{array}$ are the standard Riemann-Liouville fractional derivatives of order α and β, respectively. We consider two different cases: f, h : [0, 1] × RR, and f, h : [0, 1] × [0, ∞) → [0, ∞). In the first case, we prove the existence and uniqueness of the solutions of the above problem, and in the second case, we obtain sufficient conditions for the existence of positive solutions of the above problem. We apply a number of different techniques to obtain our results including Schauder’s fixed point theorem, the Leray-Schauder alternative, Krasnosel’skii’s cone expansion and compression theorem, and the Avery-Peterson fixed point theorem. The generality of the Riemann-Stieltjes boundary condition includes many problems studied in the literature. Examples are included to illustrate our findings.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3