Existence of Solution for a Katugampola Fractional Differential Equation Using Coincidence Degree Theory

Author:

Srivastava Satyam Narayan,Pati Smita,Graef John R.,Domoshnitsky Alexander,Padhi Seshadev

Abstract

AbstractIn this paper, the authors study the existence of positive solutions to the fractional boundary value problem at resonance $$\begin{aligned} -(D^{\alpha ,\rho }_{a+}x)(t)= & {} f(t,x(t),D^{\alpha -1, \rho }_{a+}x(t)), \ \ t\in (a,b), \\ x(a)= & {} 0, \ \ x(b)=\int _{a}^{b} x(t){\text {d}}A(t), \end{aligned}$$ - ( D a + α , ρ x ) ( t ) = f ( t , x ( t ) , D a + α - 1 , ρ x ( t ) ) , t ( a , b ) , x ( a ) = 0 , x ( b ) = a b x ( t ) d A ( t ) , where $$1<\alpha \le 2$$ 1 < α 2 , and $$D^{\alpha ,\rho }_{a+}$$ D a + α , ρ is a Katugampola fractional derivative, which generalizes the Riemann–Liouville and Hadamard fractional derivatives, and $$\int _{a}^{b} x(t){\text {d}}A(t)$$ a b x ( t ) d A ( t ) denotes a Riemann–Stieltjes integral of x with respect to A, where A is a function of bounded variation. Coincidence degree theory is applied to obtain existence results. This appears to be the first work in the literature to deal with a resonant fractional differential equation with a Katugampola fractional derivative. Examples are given to illustrate the application of their results.

Funder

National Board for Higher Mathematics of the Department of Atomic Energy of the Government of India

Publisher

Springer Science and Business Media LLC

Reference32 articles.

1. Abbas, S., Benchohra, M., Berhoun, F., Henderson, J.: Caputo-Hadamard fractional differential Cauchy problem in Frechet spaces. Rev. R. Acad. Cienc. Exactas F’is. Nat. Ser. A. Matematicas 113, 2335–2344 (2019)

2. Agarwal, R., Hristova, S., O’Regan, D.: Stability of solutions to impulsive Caputo fractional differential equations. Electron. J. Differ. Equ. 2016(58), 1–22 (2016)

3. Aibout, S., Abbas, S., Benchohra, M., Bohner, M.: A coupled Caputo-Hadamard fractional differential system with multipoint boundary conditions. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math Anal. 29, 191–208 (2022)

4. Almeida, R., Malinowska, A.B., Odzijewicz, T.: On systems of fractional differential equations with the $$\psi $$-Caputo derivative and their applications. Math. Methods Appl. Sci. 44, 8026–8041 (2021)

5. Ardjouni, A.: A Positive solutions for nonlinear Hadamard fractional differential equations with integral boundary conditions. AIMS Math. 4, 1101–1113 (2019)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3