Existence results for Schrödinger–Choquard–Kirchhoff equations involving the fractional p-Laplacian

Author:

Pucci Patrizia1,Xiang Mingqi2,Zhang Binlin3

Affiliation:

1. Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1, 06123Perugia, Italy

2. College of Science, Civil Aviation University of China, Tianjin, 300300, P. R. China

3. Department of Mathematics, Heilongjiang Institute of Technology, Harbin, 150050, P. R. China

Abstract

AbstractThe paper is concerned with existence of nonnegative solutions of a Schrödinger–Choquard–Kirchhoff-type fractional p-equation. As a consequence, the results can be applied to the special case(a+b\|u\|_{s}^{p(\theta-1)})[(-\Delta)^{s}_{p}u+V(x)|u|^{p-2}u]=\lambda f(x,u)% +\Bigg{(}\int_{\mathbb{R}^{N}}\frac{|u|^{p_{\mu,s}^{*}}}{|x-y|^{\mu}}\,dy% \Biggr{)}|u|^{p_{\mu,s}^{*}-2}u\quad\text{in }\mathbb{R}^{N},where\|u\|_{s}=\Bigg{(}\iint_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+ps}}% \,dx\,dy+\int_{\mathbb{R}^{N}}V(x)|u|^{p}\,dx\Biggr{)}^{\frac{1}{p}},{a,b\in\mathbb{R}^{+}_{0}}, with {a+b>0}, {\lambda>0} is a parameter, {s\in(0,1)}, {N>ps}, {\theta\in[1,N/(N-ps))}, {(-\Delta)^{s}_{p}} is the fractional p-Laplacian, {V:\mathbb{R}^{N}\rightarrow\mathbb{R}^{+}} is a potential function, {0<\mu<N}, {p_{\mu,s}^{*}=(pN-p\mu/2)/(N-ps)} is the critical exponent in the sense of Hardy–Littlewood–Sobolev inequality, and {f:\mathbb{R}^{N}\times\mathbb{R}\rightarrow\mathbb{R}} is a Carathéodory function. First, via the Mountain Pass theorem, existence of nonnegative solutions is obtained when f satisfies superlinear growth conditions and λ is large enough. Then, via the Ekeland variational principle, existence of nonnegative solutions is investigated when f is sublinear at infinity and λ is small enough. More intriguingly, the paper covers a novel feature of Kirchhoff problems, which is the fact that the parameter a can be zero. Hence the results of the paper are new even for the standard stationary Kirchhoff problems.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference84 articles.

1. Nonlocal Harnack inequalities;J. Funct. Anal.,2014

2. Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in ℝN{\mathbb{R}^{N}};Calc. Var. Partial Differential Equations,2015

3. Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent;Commun. Contemp. Math.,2015

4. Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field;Asymptot. Anal.,2016

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3