Affiliation:
1. Dipartimento di Ingegneria Industriale e Scienze Matematiche , Università Politecnica Delle Marche , via Brecce Bianche, 12 60131 Ancona , Italy
Abstract
Abstract
We focus on the following fractional (p, q)-Choquard problem:
(
−
Δ
)
p
s
u
+
(
−
Δ
)
q
s
u
+
V
(
ε
x
)
(
|
u
|
p
−
2
u
+
|
u
|
q
−
2
u
)
=
1
|
x
|
μ
*
F
(
u
)
f
(
u
)
in
R
N
,
u
∈
W
s
,
p
(
R
N
)
∩
W
s
,
q
(
R
N
)
,
u
>
0
in
R
N
,
$\begin{cases}{\left(-{\Delta}\right)}_{p}^{s}u+{\left(-{\Delta}\right)}_{q}^{s}u+V\left(\varepsilon x\right)\left(\vert u{\vert }^{p-2}u+\vert u{\vert }^{q-2}u\right)=\left(\frac{1}{\vert x{\vert }^{\mu }}{\ast}F\left(u\right)\right)f\left(u\right) \,\text{in}\,{\mathbb{R}}^{N},\quad \hfill \\ u\in {W}^{s,p}\left({\mathbb{R}}^{N}\right)\cap {W}^{s,q}\left({\mathbb{R}}^{N}\right), u{ >}0\,\text{in}\,{\mathbb{R}}^{N},\quad \hfill \end{cases}$
where ɛ > 0 is a small parameter, 0 < s < 1,
1
<
p
<
q
<
N
s
$1{< }p{< }q{< }\frac{N}{s}$
, 0 < μ < sp,
(
−
Δ
)
r
s
${\left(-{\Delta}\right)}_{r}^{s}$
, with r ∈ {p, q}, is the fractional r-Laplacian operator,
V
:
R
N
→
R
$V:{\mathbb{R}}^{N}\to \mathbb{R}$
is a positive continuous potential satisfying a local condition,
f
:
R
→
R
$f:\mathbb{R}\to \mathbb{R}$
is a continuous nonlinearity with subcritical growth at infinity and
F
(
t
)
=
∫
0
t
f
(
τ
)
d
τ
$F\left(t\right)={\int }_{0}^{t}f\left(\tau \right) \mathrm{d}\tau $
. Applying suitable variational and topological methods, we relate the number of solutions with the topology of the set where the potential V attains its minimum value.
Reference51 articles.
1. V. Ambrosio, “Nonlinear fractional Schrödinger equations in RN${\mathbb{R}}^{N}$,” in Frontiers in Elliptic and Parabolic Problems, Cham, Birkhäuser/Springer, 2021, p. xvii+662.
2. E. Di Nezza, G. Palatucci, and E. Valdinoci, “Hitchhiker's guide to the fractional Sobolev spaces,” Bull. Sci. Math., vol. 136, pp. 521–573, 2012. https://doi.org/10.1016/j.bulsci.2011.12.004.
3. L. Cherfils and V. Il’yasov, “On the stationary solutions of generalized reaction difusion equations with p&q-Laplacian,” Commun. Pure Appl. Anal., vol. 1, no. 4, pp. 1–14, 2004.
4. V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory,” Izv. Akad. Nauk SSSR Ser. Mat., vol. 50, no. 4, pp. 675–710, 1986.
5. V. V. Zhikov, “On Lavrentiev’s phenomenon,” Russ. J. Math. Phys., vol. 3, no. 2, pp. 249–269, 1995.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献