Synergistic interaction between sodium dodecyl benzene sulfonate (SDBS) and N,N-dimethyldodecan-1-amine oxide (DDAO) and their adsorption onto activated charcoal and Jordanian natural clay

Author:

Abdel-Rahem Rami A.1,Niaz Sana2,Altwaiq Abdelmnim M.1,Esaifan Muayad1,Al Bitar Mohammad Bassam3,Al Bawab Abeer2

Affiliation:

1. Department of Chemistry , College of Arts and Sciences, University of Petra , Amman 11196 , Jordan

2. Department of Chemistry , College of Sciences, University of Jordan , Amman , Jordan

3. Alfa Chemicals Manufacturing Est , King Abdullah II Industrial City – 8th Street , Amman 11118 Jordan

Abstract

Abstract Solutions of sodium dodecyl benzene sulfonate (SDBS) and N,N-dimethyldodecan-1-amine oxide (DDAO) with mole fractions of 0.00, 0.25, 0.50, 0.75 and 1.00 were prepared and their surface tension was measured as a function of total surfactant concentration. The critical micelle concentration (CMC) values of these mixed solutions were also determined. The minimum area occupied by a surfactant molecule at air/water interface was calculated for single and binary surfactant mixtures. A pronounced synergistic interaction between SDBS and DDAO was detected. The surface tension and CMC-values of SDBS/DDAO mixtures are significantly lower than those of the single surfactant. The mixed system of SDBS/DDAO exhibits a highly negative interaction parameter (β = −10.6) according to regular solution model, and is found to fulfill the condition of Hua and Rosen, indicting a strong synergistic interaction between the two surfactants. The contact angle measurements show the wettability of the surfactant mixture onto polyethylene substrate is higher than of the respective single surfactant. In addition, the adsorption of SDBS and DDAO or their mixtures on 1.0% activated carbon and 5.0% Jordanian natural clay (JNC), respectively, was investigated using the depletion method. The individual surfactants were found to adsorb to a considerable extent on activated carbon, and a slightly higher adsorption tendency was even measured for mixed SDBS/DDAO surfactant systems. Although no SDBS molecules adsorbed on JNC, adsorption was observed for solutions containing DDAO and SDBS/DDAO surfactants. The improvement in wettability and adsorption of SDBS/DDAO surfactants at the air/water and solid/water interfaces is directly related to the synergistic interaction between the two surfactants.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3