Tensiometric and rheological investigations of single and mixed systems consisting of cocamidopropyl betaine (CAPB) and sodium dodecyl benzene sulfonate (SDBS) in aqueous solutions

Author:

Abdel-Rahem Rami A.1,Al-Akayleh Faisal2,Al-Remawi Mayyas2

Affiliation:

1. Department of Chemistry , College of Arts and Sciences, University of Petra , Amman 11196 , Jordan

2. Department of Pharmacy , College of Pharmacy and Medical Sciences, University of Petra , Amman 11196 , Jordan

Abstract

Abstract The surface tension (σ), critical micelle concentration (CMC), surface excess (Γ), minimum area occupied by a surfactant molecule (A min), the viscosity and oscillatory rheological studies of aqueous solutions containing cocamidopropyl betaine (CAPB) and sodium dodecylbenzene sulfonate (SDBS) at molar fractions of 0.00, 0.25, 0.50, 0.75 and 1.00 and 25 °C were presented. CAPB and SDBS were not found to interact synergistically in water at any of the molar fractions studied. This is due to the fact that the critical micelle concentrations of these mixtures were higher than those predicted by Clint’s equation, indicating an antagonism that rarely occurs in mixed amphoteric/anionic surfactant systems. The minimum area occupied by a surfactant molecule (A min) was reduced in CAPB/SDBS mixtures compared to unmixed surfactants. In contrast, the viscosity of the mixed CAPB/SDBS system increased significantly from 1.0 mPa s to a maximum of 36.0 Pa s at higher CAPB mole fractions (0.5–0.8). The rheograms obtained from the oscillation measurements of the viscous CAPB/SDBS solutions are characteristic of wormlike micelles (WLMs) according to the Maxwell model. The results of this surprising binary CAPB/SDBS surfactant mixing system are presented and discussed.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3